广告

通过工艺建模进行后段制程金属方案分析

时间:2024-04-12 作者:泛林集团 Semiverse Solutions 部门半导体工艺与整合部高级经理Daebin Yim 阅读:
传统的微缩工艺要求阻挡层/内衬厚度低至极小的 2-3nm,极大压缩了现代先进逻辑节点上铜线的空间。无需阻挡层的钌等新金属在满足电磁可靠性需求的同时,已跻身为有希望替代铜的材料。通常,许多晶圆实验都需要完成这类金属方案路径探索。虚拟半导体工艺建模是研究金属线设计选择更为经济、快捷的方法。

由于阻挡层相对尺寸及电阻率增加问题,半导体行业正在寻找替代铜的金属线材料。

在较小尺寸中,钌的性能优于铜和钴,因此是较有潜力的替代材料。

随着互连尺寸缩减,阻挡层占总体线体积的比例逐渐增大。因此,半导体行业一直在努力寻找可取代传统铜双大马士革方案的替代金属线材料。

相比金属线宽度,阻挡层尺寸较难缩减(如图1)。氮化钽等常见的阻挡层材料电阻率较高,且侧壁电子散射较多。因此,相关阻挡层尺寸的增加会导致更为显著的电阻电容延迟,并可能影响电路性能、并增加功耗。

图1:铜微缩与阻挡层线结构图

工程师们已经注意到钌和钴等新的替代金属线,并对其进行了测试,这些材料可以缓解线宽较窄和面积较小时的电阻率升高问题。工艺建模可用于比照分析不同沟槽深度和侧壁角度下,钌、钴和铜等其他金属在不同关键尺寸的大马士革工艺中的性能(图2)。

通过建模,可以提取总导体横截面区域的平均线电阻、线间电容和电阻电容乘积值;随后,可比较铜、钌、钴金属方案的趋势。

图2:(上)用于提取电阻和电容的两条金属线 3D 结构图;(下)不同金属和阻挡层材料的三种情况图

为系统性地探究使用不同金属的设计和材料影响,我们通过对三个变量(关键尺寸、深度和侧壁角度)使用蒙特卡罗均匀分布,进行了包含 1000 次虚拟运行的实验设计。

图3:电阻电容实验设计结果(点:实验设计数据;线:趋势曲线)从上至下:电容与面积、电阻与面积、电阻电容乘积与面积

图 3 突出显示了每种金属的电阻与电阻电容乘积的交叉点,并表明在较小尺寸上,无需阻挡层的钌方案优于其他两种金属材料。这一情况分别在线关键尺寸值约为 20nm 和面积值约为 400nm时出现。这也表明,无需阻挡层的钌线电阻在线关键尺寸小于约 20nm 时最低; 当线关键尺寸值小于 20nm 时,2nm 氮化钽阻挡层的电阻率占据了铜和钴线电阻的主要部分,造成电阻急剧增加。当线关键尺寸缩减时,也在侧壁和晶界出现额外散射,并导致电阻升高。沟槽刻蚀深度和侧壁角度与电阻之间呈线性关系;电阻与线横截面面积成反比例关系。

我们也分析了线边缘粗糙度对电阻的影响。

图4:(上)当线边缘粗糙度振幅为 1 且相关性为 1 时,关键尺寸为 20nm 的铜线模型图;(下)钌和铜线(关键尺寸分别为 15nm、20nm、25nm)实验设计结果的箱形图

在图 4(下)中,由于无需阻挡层的结构,线关键尺寸为 15nm 时,钌线电阻电容值对线边缘粗糙度振幅的敏感性远低于铜,而铜由于高阻力的氮化钽阻挡层非常易受电阻电容乘积变化的影响。

结论

传统的微缩工艺要求阻挡层/内衬厚度低至极小的 2-3nm,极大压缩了现代先进逻辑节点上铜线的空间。无需阻挡层的钌等新金属在满足电磁可靠性需求的同时,已跻身为有希望替代铜的材料。

该研究表明,钌的电阻电容延迟显著低于其他材料,因此可能是先进节点上优秀的金属候选材料。通常,许多晶圆实验都需要完成这类金属方案路径探索。虚拟半导体工艺建模是研究金属线设计选择更为经济、快捷的方法。

参考资料:

1. Liang Gong Wen et al., "Ruthenium metallization for advanced interconnects," 2016 IEEE International Interconnect Technology Conference / Advanced Metallization Conference (IITC/AMC), San Jose, CA, USA, 2016, pp. 34-36, doi: 10.1109/IITC-AMC.2016.7507651. 

2. M. H. van der Veen et al., "Damascene Benchmark of Ru, Co and Cu in Scaled Dimensions," 2018 IEEE International Interconnect Technology Conference (IITC), Santa Clara, CA, USA, 2018, pp. 172-174, doi: 10.1109/IITC.2018.8430407 

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
  • 苹果积极入局AI PC,其M4系列芯片2024年底量产 根据此前研发计划,台积电预计于2025年下半年开始生产2nm工艺的芯片。因此,新的M4系列芯片很可能继续和M3一样保持3nm工艺,但有一定概率采用台积电增强版3nm工艺,预计性能和功效预计会提升。这表明苹果公司在追求更高性能的同时,也在关注能效比的优化。
  • 三星获得美国政府64亿美元建厂补贴,投资总额上升至450亿美元 这些新支出将集中在得州泰勒市,附近还有其他现有业务。据悉,三星计划将在那里打造一整个半导体研发—生产生态,包括一个致力于比当前工艺节点“先进一代”的研发厂、两座专注于大规模生产4nm和2nm工艺制程芯片的晶圆厂,还有一座为高带宽内存进行3D封装,以及具备2.5D芯片封装能力的先进封装设施。
  • "韩国版ASML"否认股权出售报道 HPSP被称为"韩国版ASML",是一家专注于半导体材料、零部件、装备的企业,市价总额达到3.6159万亿韩元,位于KOSDAQ排名第8位。HPSP否认了韩国媒体关于其出售股权的报道。HPSP在提交的监管文件中明确表示,该报道“毫无根据”。
  • 华为上海青浦研发中心即将竣工,双倍高薪挖大厂工程师 华为上海研发基地(青浦)2020 年 9 月启动,预计于今年 6 月竣工交付。园区设有一座芯片研发中心,以及华为芯片设计子公司海思半导体的新总部,园区也设有无线技术和智能手机的研发中心。
  • 被下调目标价!英特尔的芯片代工战略再受重创! 在美国本土芯片代工市场上,英特尔难以“一呼百应”,特别是在一些先进芯片代工上必须拿出真本事来,否则只能转包给被美国政府“迎进来”的台积电、三星。长此以往,英特尔或将丢失更多的本土订单,其市场空间也将被进一步挤占。
  • 美国商务部官员,首次出现在台积电下届董事候选人名单中 值得注意的是,入选台积电下届董事候选人提名的乌苏拉‧伯恩斯,其身份之一,是美国商务部供应链竞争力咨询委员会(ACSCC)副主席。
相关推荐
    广告
    近期热点
    广告
    广告
    可能感兴趣的话题
    广告
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了