终于有人说清楚了什么是DRAM、什么是NANDFlash

李肖遥 2022-02-14 08:11
    关注、星标公众号,直达精彩内容

来源:网络素材

整理:李肖遥


所有使用者对“存储器”这个名词可是一点都不陌生,因为所有的电子产品都必须用到存储器,且通常用到不只一种存储器。不过对于存储器种类、规格与形式,很多人容易搞混。比如NAND Flash,产业新闻里常常提到的DRAM,还有SRAM、SDRAM、DDR 3、DDR 4、NOR Flash … 这些又是什么?

先来一段百度百科。

存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存,港台称之为记忆体)。外储存器是指除计算机内存及CPU缓存以外的储存器,此类储存器一般断电后仍然能保存数据。常见的外存储器有硬盘、软盘、光盘、U盘等。

而简单来说,DRAM就是我们一般在用的内存,而NAND Flash 闪存,它在做的事情其实是硬盘。

(这段是给电脑小白的科普,大家可以酌情跳过)

不熟悉PC知识的朋友常常在选购设备时问,硬盘和内存到底有什么差别?我硬盘容量明明有 1TB,但PC还是跑得很慢哎?

硬盘和内存的差异,在于把电源关掉后、空间中储存的数据还会不会留着。就算关掉电源,硬盘的数据也不会消失。

但我们要运算数据时,如果 CPU 要直接从硬盘里面抓数据,时间会太久。所以”内存”会作为中间桥梁,先到硬盘里面复制一份进来、再让 CPU 直接到内存中拿数据做运算。这样会 比直接去硬盘抓数据,快约数百万倍。

打开任务管理器,就可以看到现在执行中程序占掉的内存空间,很多人就在骂Chrome 耗费的运算资源很高,内存使用率高于其他浏览器,多开几个分页内存就被吃完了。

所以简单来说,计算机在运作就像是办公一样,喝饮料、看书本、听音响… 想一次使用越多东西、桌面(内存)就要越大。但其他一时间没有要用到的东西,都会放在抽屉(硬盘)里面。所以硬盘就算再大,你一次想执行很多任务,还是得要看内存大小。

内存的处理速度比硬盘更快,但断电之后数据会消失,且价格也比硬盘贵。
当然存储器的层次结构里面还有更多细节。参见后文。

简单来说,CPU 里面也有一个储存空间,叫做 Register。要运算时、CPU 会从内存中把数据载入Register、再让Register中存的数字做运算,运算完再将结果存回内存中。毕竟 CPU 和内存终究还是两片不同的芯片,没有在同一片芯片里直接抓数据快。

还有一个概念是 Cache,这是CPU 和内存之间的中间桥梁。

速度来讲,就是:CPU里面的Register > Cache > 内存 > 硬盘。越上层(越靠近 CPU),速度就越快、价格越高、容量越低。

存储器的分类



电的存储器是指电写电读的存储器,主要分为两大类,如图一所示:
易失性存储器(Volatile Memory,VM):电源开启时资料存在,电源关闭则资料立刻流失(资料挥发掉),例如:SRAM、DRAM、SDRAM、DDR-SDRAM 等。

非易失性存储器(Non-Volatile Memory,NVM):电源开启时资料存在,电源关闭资料仍然可以保留,例如:ROM、PROM、EPROM、EEPROM、Flash ROM、FRAM、MRAM、RRAM、PCRAM 等。

▲ 图一:存储器的分类。

存储器的单元



存储器的“单元”(Cell)是指用来存取资料的最小结构,如果含有一个晶体管
(Transistor)与一个电容(Capacitor)则称为“1T1C”;如果含有一个晶体管(Transistor)与一个电阻(Resistor)则称为“1T1R”;如果含有一个二极体(Diode)与一个电阻(Resistor)则称为“1D1R”。

存储器的每个“单元”不一定只能储存 1 个位的资料,由于我们对存储器容量的要求越来越高,每个“单元”能储存的资料越来越多,依照每个“单元”能储存的资料位数又分为:单层单元(Single-Level Cell,SLC)、多层单元(Multi-Level Cell,MLC)、三层单元(Triple-Level Cell,TLC)、四层单元(Quad-Level Cell,QLC)等。

存储器层次结构



要了解电子产品的各种存储器配置,就必须先介绍“存储器层次结构”(Memory hierarchy)观念。存储器层次结构是指如何将储存容量不同、运算速度不同、单位价格不同的多种存储器妥善分配,才能达到最大的经济效益,使产品的运算速度合理、储存容量合理、产品价格合理。

图二为存储器阶层示意图,由上而下依序为暂存器、快取存储器、主存储器、辅助存储器:

暂存器(Register,也译为寄存器):在处理器内,用来设定处理器的功能,主要是“暂时储存”设定值的地方。

快取存储器(Cache memory,翻译版本有缓存,快取缓存区,快取存储器;台湾翻译为快取。):在处理器内,执行程序时“暂时储存”程序与资料的地方,通常以 SRAM 制作。

主存储器(Main memory):在处理器外,“暂时储存”程序与资料的地方,通常以 DRAM 制作,目前已经改良成 SDRAM 或 DDR。

辅助存储器(Assistant memory):在处理器外,“永久储存”程序与资料的地方,包括:快闪存储器、磁盘机、光盘机、磁带机等。

不同种类的存储器分别有不同的储存容量、工作速度、单位价格:

储存容量:辅助存储器(GB)> 主存储器(MB)> 快取存储器(KB)> 暂存器(B)。
工作速度:辅助存储器(1ms)< 主存储器(10ns)< 快取存储器(1ns)< 暂存器(1ns)。
单位价格:辅助存储器 < 主存储器 < 快取存储器 < 暂存器。

▲ 图二:存储器阶层示意图。

存储器的应用



所有的电子产品都必须用到存储器,而且通常用到不只一种存储器,由于存储器的种类繁多,常常让使用者混淆,我们简单说明不同存储器之间的差异,图三为手机主要芯片的系统方块图(System block diagram),包括:应用处理器(Application processor)、基带处理器(Baseband processor)、运动控制器(Motion Controller)。

应用处理器主要是执行操作系统(Operating System,OS)与应用程序(Application program,App),暂存器与快取存储器目前都是内建在处理器内,其中暂存器用来设定处理器的功能,用来设定暂存器数值的程序,也就是用来趋动硬件的软件程序又称为“固件”(Firmware);快取存储器是在执行程序时用来“暂时储存”程序与资料的地方,由于在处理器内离运算单元比较近,可以缩短程序与资料来回的时间,加快程序的执行速度因此称为“Cache”。

由于快取存储器成本较高因此容量不大,如果执行程序时放不下,则可以退一步放在主存储器内,可是目前主存储器所使用的 SDRAM 或 DDR,属于易失性存储器,电源关闭则资料立刻流失,因此关机后资料必须储存在非易失性的辅助存储器内,早期辅助存储器使用磁盘机、光盘机、磁带机等,由于半导体制程的进步,目前大多使用快闪存储器(Flash ROM),或所谓的固态硬盘(Solid State Disk,SSD),固态硬盘其实也是使快闪存储器制作。

由于快取存储器(SRAM)与主存储器(SDRAM、DDR)是执行程序用来“暂时储存”程序与资料的地方,与处理器内的运算单位直接使用汇流排(Bus)连接,一般都是用“位”(bit)来计算容量;而辅助存储器是“永久储存”程序与资料的地方,由于一个位组(Byte)可以储存一个半型字,因此一般都是用“位组”(Byte)来计算容量。

▲ 图三:手机主要芯片的系统方块图(System block diagram)。

静态随机存取存储器(SRAM:Static RAM)

以 6 个晶体管(MOS)来储存 1 个位(1bit)的资料,而且使用时“不需要”周
期性地补充电源来保持记忆的内容,故称为“静态”(Static)。

SRAM 的构造较复杂(6 个晶体管储存 1 个位的资料),不使用电容所以存取速度较快,但是成本也较高,因此一般都制作成对容量要求较低但是对速度要求较高的存储器,例如:中央处理器(CPU)内建 256KB、512KB、1MB 的“快取存储器”(Cache memory),一般都是使用 SRAM。

动态随机存取存储器(DRAM:Dynamic RAM)

以一个晶体管(MOS)加上一个电容(Capacitor)来储存一个位(1bit)的资料,而且使用时“需要”周期性地补充电源来保持记忆的内容,故称为“动态”(Dynamic)。

DRAM 构造较简单(一个晶体管加上一个电容),由于电容充电放电需要较长的时间造成存取速度较慢,但是成本也较低,因此一般制作成对容量要求较高但是对速度要求较低的存储器,例如:个人电脑主机板通常使用 1GB 以上的 DDR-SDRAM 就是属于一种 DRAM。由于处理器的速度越来越快,传统 DRAM 的速度已经无法满足要求,因此目前都改良成 SDRAM 或 DDR-SDRAM 等两种型式来使用。

同步动态随机存取存储器(SDRAM:Synchronous DRAM)

中央处理器(CPU)与主机板上的主存储器(SDRAM)存取资料时的“工作时脉”(Clock)相同,故称为“同步”(Synchronous)。由于 CPU 在存取资料时不需要“等待”(Wait)因此效率较高,SDRAM 的存取速度较 DRAM 快,所以早期电脑主机板上都是使用 SDRAM 来取代传统 DRAM,不过目前也只有少数工业电脑仍然使用 SDRAM。

可以记住一个简单的结论:SRAM 比较快、 DRAM 比较慢;SRAM 比较贵、DRAM 比较便宜。


这是我们平常在计算机中使用的内存,更精确的说法应该叫”内存模块”(Memory Module)。一个内存模块实际上就是由一块小电路板、再加上几块的 DRAM 芯片构成。图标中的内存模块上一共有 8 个 DRAM 芯片。让我们把一个 DRAM 芯片的内部结构剖开看看,会看到一个储存数组(Memorry Array)。

CPU 会给这个储存数组”行地址”和”列地址”,就可以选出一个”储存单元”。常见的储存单元包含了 4 bit 或 8 bit,每一个 bit 都会采用一个电路结构,我们称为 DRAM 的一个”基本储存单元”。

这个基本储存单元中包含了一个晶体管匹配一个电容。然后就可以视电容器是否有充电电荷存在、来判别目前的记忆状态。


“写入内存”的动作,就是由外部的数据线、对电容进行充电或放电,从而完成写入 1 或 0 的数字数据。

DRAM 使用一个晶体管(MOS)与一个电容来储存一个位的资料(一个 0 或一个 1),如图四(a)所示,当晶体管(MOS)不导通时没有电子流过,电容没有电荷,代表这一个位的资料是 0,如图四(b)所示;当晶体管(MOS)导通时(在闸极施加正电压),电子会由源极流向汲极,电容有电荷,代表这一个位的资料是 1,为了要将这些流过来的电荷“储存起来”,因此必须使用一个微小的电容,如图四(c)所示,DRAM 就是因为电容需要时间充电,所以速度比 SRAM 还慢。

▲ 图四:动态随机存取存储器(DRAM)的结构与工作原理示意图。

由于电容会有漏电的现象,导致电位差不足而使记忆消失,因此除非电容经常周期性地充电,否则无法确保数据能长久保存起来。

由于每个 DRAM 基本储存单元的电路结构非常的简单,所以功耗低、价格也较低。这样一来用低成本就能制造出大储存容量的 DRAM 芯片。缺点就是读写的速度慢(电容要充电放电),影响了 DRAM 的性能。

SRAM 的结构则较为复杂,一共有六个晶体管构成。我们能分别用 M1、M2、M3 到 M6 进行标记。这六个晶体管合起来才能保存一个 bit。


SRAM 芯片和 DRAM 芯片不太一样,不需要分成行地址和列地址分别选择,而且 SRAM 的设计相对来说又更加灵活,一个地址对应的储存单元数量可以是 8 bit、10 bit,或 32 bit、40 bit、64 bit 都行。

另外,晶体管的开关速度远比电容充电放电的速度还快,所以相对于 DRAM、SRAM 的读写速度比 DRAM 快很多。

然而 SRAM 中要储存一个 bit 就得用到六个晶体管。晶体管的数量一多、就会造成芯片的面积变大,从而带来集成电路难以变得更小、还有价格更贵的问题。

(SRAM 的价格比起 DRMA 要高达 1000 倍以上。比如 2010 年世代––—SRAM 的每单位储存价格是 $60/MB,DRAM 则是 $0.06/MB。)

同时每个晶体管都要耗电,晶体管越多、功耗就越高。考虑到价格高和功耗大,目前只能在一些很严苛的地方来使用 SRAM,比如上面提到的快取 (Cache)。

故目前”主存储器”还是使用 DRAM 技术,但小块用来拉速度的”快取”就是采用 SRAM。然而无论是 DRAM 还是 SRAM,一不供应电源就会丧失储存的数据,所以都叫做挥发性内存。

铁电随机存取存储器 FRAM

动态随机存取存储器(DRAM)是以一个晶体管加上一个电容来储存一个位(1bit)的资料,由于传统 DRAM 的电容都是使用“氧化矽”做为绝缘体,氧化矽的介电常数不够大(K 值不够大),因此不容易吸引(储存)电子与电洞,造成必须不停地补充电子与电洞,所以称为“动态”,只要电脑的电源关闭,电容所储存的电子与电洞就会流失,DRAM 所储存的资料也就会流失。

要解决这个问题,最简单的就是使用介电常数够大(K 值够大)的材料来取代“氧化矽”为绝缘体,让电子与电洞可以储存在电容里不会流失。目前业界使用“钛锆酸铅”(PZT)或“钽铋酸锶”(SBT)这种介电常数很大(K 值很大)的“铁电材料”(Ferroelectric material)来取代氧化矽,则可以储存电子与电洞不会流失,让原本“易失性”的动态随机存取存储器(DRAM)变成“非易失性”的存储器称为“铁电随机存取存储器”(Ferroelectric RAM,FRAM)。

NAND Flash 又是什么呢?



继续讲讲非易失性的部分:

Flash(闪存)由于具备了重量轻、体积小、功率低等优点,被应用在各类电子产品的硬盘上。Flash 又可以分成 NOR 型 Flash 和 NAND 型 Flash。

NOR Flash 比 NAND Flash 更早导入市场。读取的速度较快,但写入的速度慢、价格也比 NAND Flash 贵。

目前用来储存操作系统的程序代码或重要数据,比如拿来做 ROM。像是生产 NOR Flash 的台厂旺宏就是因为打入任天堂 Switch 主机的 ROM 供应链,今年营收上看攀升。

NAND Flash 写入的速度快、价格较低,故目前以 NAND Flash 最为普遍。现在的 USB 硬盘和手机储存空间,就是用 NAND Flash 为主流技术。

另外,固态硬盘(Solid State Drive, SSD)也是以 NAND 型 Flash 为基础所建构的储存装置。SSD 不像传统硬盘(HDD)中有马达、读写臂等零件。速度慢、功耗高,对震动又相当敏感,很难用在小型行动装置中。

SSD 在读写数据时不会有噪音,耐震、传输速度快、重量又能缩减到 HDD 十分之一以上,现在已经成为个人计算机和笔记本电脑的主流储存设备。


总结:
依照停止供应电源的话、是否还能保留数据,分成”易失性”与”非易失性”存储。
易失性存储分成 DRAM 和 SRAM。
SRAM 更快但价格更贵,所以主存储器多用 DRAM、快取多用 SRAM。
非易失性存储分成 ROM 和 Flash。主要用来作为硬盘。
Flash 又分成 NOR Flash 与 NAND Flash,现在硬盘多以 NAND Flash 构成的 SSD 为主。

▲ Q:看看一天到晚听到的 DRAM、SRAM、Flash 等内存厂商又分别代表哪层?

版权归原作者所有,如有侵权,请联系删除。

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

关注我的微信公众号,回复“加群”按规则加入技术交流群。

关注程序员编程基地,回复“pdf”获取程序员必读经典书单,一起编程一起进阶。



点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。

李肖遥 公众号“技术让梦想更伟大”,作者:李肖遥,专注嵌入式,只推荐适合你的博文,干货,技术心得,与君共勉。
评论 (0)
  • 艾体宝干货 | 用于故障排除的最佳 Wireshark 过滤器引导语:在网络故障排除过程中,Wireshark是一款非常强大的工具,它可以用来分析网络数据包并解决各种问题。本文将介绍一些好用的Wireshark过滤器,以便更有效地进行故障排除。简介:Wireshark是一种流行的网络协议分析工具,可用于捕获和分析网络数据包。在网络故障排除中,Wireshark是一款不可或缺的工具,它可以帮助您识别和解决各种网络问题。本文将介绍一些最佳的Wireshark过滤器,帮助您提取和分析特定的数据包,加快
    虹科网络可视化 2024-05-29 15:49 153浏览
  • 配图来自Canva可画随着人工智能技术的快速发展,大模型以其强大的数字处理能力和深度学习能力,不断与各领域交叉融合,逐步成为产业创新的关键抓手,和驱动新质生产力的关键引擎。据国家最新公布的数据显示,截至今年3月,我国共有117个生成式人工智能服务完成备案,各类国产大模型,更是超过了200多个,多模态的大模型应用场景正在不断拓展。然而,随着大模型的快速发展,算力成本日益成为影响人工智能推广应用的重要因素,大模型产品的价格居高不下,更是长期制约着人工智能应用的发展。近日,随着字节跳动率先将大模型的使
    刘旷 2024-05-29 10:13 78浏览
  • 介质损耗因数(Dissipation Factor,简称DF)是衡量电介质材料在交流电场作用下能量损耗的一个参数。它与材料的介电性能和内部结构密切相关,对于电子元件如电容器的设计和性能至关重要。以下是介质损耗因数的几个关键含义:能量损耗:介质损耗因数表示在交流电路中,电介质材料每周期内所损耗的能量与存储能量的比值。损耗的能量主要以热的形式散失。材料纯度:介质损耗因数的大小可以反映材料的纯度。纯度越高,材料的介质损耗因数越低,因为杂质和缺陷会增加能量损耗。温度稳定性:介质损耗因数随温度的变化可以指
    仓叔谷粒 2024-05-29 09:59 58浏览
  • 方案概述       在汽车发展和用户需求的推动下,汽车钥匙开始从传统的机械钥匙向数字化、智能化方向发展。目前常见的数字钥匙集成了蓝牙、NFC、UWB等技术实现了移动设备与车端的通信,可以帮助用户便捷的实现车辆功能控制。随着数字钥匙的广泛应用,相关的测试需求也进一步增加,人工测试无法满足测试进度要求,正逐渐被自动化测试所取代。       经纬恒润基于自研的INTEWORK系列产品,推出了数字钥匙自动化测试解决方案,
    经纬恒润 2024-05-29 15:26 68浏览
  • 5月27日据企业信息网站披露,国产集成电路产业投资基金三期股份有限公司(下文简称“国家大基金三期”),已于2024年5月24日正式注册成立,注册资本为3440亿元。据企业信息网站显示,公司经营范围为私募股权投资基金管理、创业投资基金管理服务,以私募基金从事股权投资、投资管理、资产管理等活动,企业管理咨询。传感器专家网https://www.sensorexpert.com.cn专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信
    传感器专家网 2024-05-28 11:48 135浏览
  • (什么是蚀刻?)蚀刻是一种利用化学强酸腐蚀、机械抛光或电化学电解对物体表面进行处理的技术。从传统的金属加工到高科技半导体制造,都在蚀刻技术的应用范围之内。在印刷电路板(PCB)打样中,蚀刻工艺一旦出现问题必然是批量性问题,最终会给产品造成极大品质隐患。虽然蚀刻工艺的不断改良及新材料应用,使得印刷电路板(PCB)蚀刻加工的产品良率一直在提升,但是下游客户对于成品的要求也越来越高。侧蚀问题是产品蚀刻过程中经常被提出来讨论的一项,由于目前腐蚀液的固有特点,不仅向下而且对左右各方向都产生蚀刻作用,所以侧
    海伯森技术 2024-05-29 15:06 72浏览
  • PCI EXPRESS应用的集成10/100/1000M/2.5G以太网控制器(支持REALTEK DRAGON SW进行带宽控制)Realtek RTL8125BG/RTL8125BGS 10/100/1000M/2.5G以太网控制器将四速IEEE 802.3兼容媒体访问控制器(MAC)与四速以太网收发器、PCI Express总线控制器和嵌入式内存相结合。RTL8125BG/RTL8125BGS采用最先进的DSP技术和混合模式信号技术,通过CAT 5e UTP电缆或CAT 3 UTP(仅1
    罗裕成 2024-05-29 15:26 93浏览
  • 科技云报道原创。人类距离第一个AGI的出现已经越来越近了!马斯克在今年早些时候预测,AGI可能会在2026年投入使用。DeepMind联合创始人、首席AGI科学家Shane Legg在一次访谈中认为,2028年,人类有50%的概率开发出第一个AGI。然而百度CEO李彦宏的观点则更加审慎,他认为AGI还需要10年以上的时间才能出现。自1956年达特茅斯会议提出“人工智能”这一概念以来,实现人类水平的智能一直是AI领域的圣杯。去年上半年,有主流研究者提出,大语言模型已经表现出“通用人工智能的火花”(
    科技云报到 2024-05-28 14:59 142浏览
  • 艾体宝干货 | 教程:使用ntopng和nProbe监控网络流量引导语:本教程旨在分享如何通过 ntopng 和 nProbe 这两款工具,深入了解和掌握网络流量监控的艺术。我们将提供从基本概念到高级应用的全面指导,涵盖了在多种平台和设备上的部署和配置步骤。不论您是专业人员还是技术爱好者,跟随本教程,都能够有效地安装、配置并运用这些工具,以洞察网络的运行状态和性能,确保网络安全与高效运行。简介:本文是关于使用 ntopng 和 nProbe 监控网络流量的教程。文章详细介绍了如何配置和使用这两个
    虹科网络可视化 2024-05-29 15:52 95浏览
  • Nginx 是一款高性能的 HTTP 和反向代理服务器,同时也充当 Web 服务器和电子邮件代理服务器。它以其轻量级的特性和高效的性能在网络服务领域得到广泛应用。下面将详细探讨 Nginx 的不同方面: 1. 基本概念   -定义与功能:Nginx (engine x) 是一个高性能的 HTTP 和反向代理服务器,具备处理大量并发连接的能力[^1^]。    -主要特点:其轻量级特性使得 Nginx 在资源消耗上相对较低,适合用于负载均衡、缓存等场景。
    丙丁先生 2024-05-29 08:21 92浏览
  • 激光雷达系统需要用精确的时间测量来计算距离和生成高分辨率的3D图像。晶振在激光雷达系统中起着关键作用,主要用于提供稳定的时钟信号和高精度的时间基准。图片来源:Wingtra晶振的作用1. 时间基准: 激光雷达通过发射激光脉冲并测量其返回时间来计算物体的距离。因此需要一个非常精确的时间基准。晶振提供的稳定时钟信号确保时间测量的准确性,从而保证距离计算的精度。2. 数据采集与处理: 激光雷达系统在接收到反射信号后,需要快速进行数据采集和处理。晶振提供的时钟信号用于同步数据采集和处理单元,确保系统能够
    koan-xtal 2024-05-29 13:00 50浏览
  • 单端信号需要转换成差分信号,以便使用ADC进行转换。这个就所谓的ADC驱动电路。需要的结果为Vp = Vcm + Vi/2Vn = Vcm – Vi/2这样 Vp – Vn = Vi使用简单的加法器和减法器完成这个功能。 电路中Vcm = 2.5V 可以求得 Vp = Vcm+ViVn = Vcm-Vi得到的结果差分信号为输入信号的2倍,实现单端到差分的转换。上述结论需要信号源输入阻抗为0。因此对于输出阻抗较高的传感器是不适用的。另外需要使用多个匹配度较好的电阻,否则会产生误差。考虑简化一下,使
    southcreek 2024-05-27 16:18 176浏览
  • 随着科技的飞速发展,汽车工业也在不断地进行着革新。其中,车灯作为汽车的重要组成部分,其智能化配置已经成为汽车行业的一大趋势。这种趋势不仅为消费者带来了更加安全、便捷的驾驶体验,同时也为商家提供了丰富的商业机会。汽车工业的迅猛发展,车辆电子化、智能化水平的不断提升,车灯作为汽车的重要组成部分,其功能和控制方式也在经历着革命性的变化。传统的机械式车灯控制已经逐渐让位于更为高效、智能的CAN数据协议控制系统。 CAN(Controller Area Network)即控制器局域网络,是一种国
    lauguo2013 2024-05-28 10:43 164浏览
  • 在Midjourney的生图创作中,提示词扮演着至关重要的角色。为了更精准地操控MidjourneyBot,生成出符合预期的精彩图像,需要深入剖析如何精心编写高效的提示词。提示词主要由基本提示词、高级提示词、多重提示词以及排列提示词构成。基本提示词简洁明了,能快速触发MidjourneyBot的灵感;高级提示词则更为详尽,能够引导生成更具个性和创意的图像。 重点关注提示词的编写要点。提示词的长度、语法、焦点和细节,都是影响最终生成图像效果的关键因素。通过精心调整这些要素,可以让Midjourn
    戈壁滩上绽放 2024-05-28 17:36 154浏览
  • 设计领域的应用 Midjourney的应用场景广泛而多元,在创意设计领域有着卓越表现。作为一款功能卓越的图像生成工具,Midjourney为平面设计、产品设计、室内设计、建筑设计、时尚设计以及工业设计等多个领域注入了无尽的创作活力。 首先,让我们走进平面设计这一充满创意的艺术领域。Midjourney作为一款强大的图像生成工具,为平面设计师提供了源源不断的创作灵感。在本节中,详细解析Midjourney在平面设计中的实际应用,通过提供平面设计提示词参考,帮助读者丰富提示词语料库。同时,演示了如何
    戈壁滩上绽放 2024-05-29 12:50 136浏览
我要评论
0
4
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦