听杨教授谈“水积分器”,学最全的开关电容滤波器技术!

亚德诺半导体 2019-03-17 10:34

1972年,美国的DAVID L.FRIED(弗雷德)在IEEE JOURNAL OF SOLID-STATE CIRCUITS,AUGUST 1972上发表 Analog Sample-Data Filters 一文,开启了开关电容滤波器的序幕。而经过几十年的发展,开关电容滤波器已经成熟,并在合适的场合发挥着重要的作用。

开关电容滤波器的核心:一个用开关、电容实现的可变电阻。


如下:图1是一个以“水”类比的“水积分器”模型。其中的球阀高低,像一个水阻R,它和水库水位(类比于输入电位)一并决定着单位时间内的水流量(类比于电流),此水流注入到水容1(类比于电容)中,使得水容1的水位(类比于电位)上升。这就是一个积分器,水容1的水位,就是水积分器的输出,而水库水位则是水积分器的输入。



 图1:积分器的水模型,水阻大小决定水容1水位上升速度


在输入水位不变、水容1大小不变的情况下,要改变积分器输出(水容1的水位)速率,可以通过调节球阀高低实现。这类似于一个电位器调节电阻的积分器。客观上,它可以改变积分器的时间常数。


水积分器中,改变积分器时间常数还有一个方法——“开关水容法”,如图2所示。它不再使用连续调节的球阀,改用两个开关SW1和SW2(靠球阀拔开和球阀堵塞实现),并且在输入和输出之间,增加了一个水容2,在Φ1阶段,SW1导通,SW2闭塞,水容2立即被注水到与水库水位相同——注意,由于SW1导通时,水道是完全打开的,我们假设其水阻为0,因此这个注水过程将是非常短暂的,无需考虑注水过程。在Φ2阶段,SW2导通,SW1闭塞,水容2的水立即流入水容1。如此往复,水容1的水位也是在上升的。


图2:积分器的开关水容模型,往复频率越快,水容1水位上升越快,相当于水阻越小


此时,改变水积分器的时间常数,就可以通过改变Φ1和Φ2的往复频率fCLK实现。这看起来,像是用fCLK和水容2联合模拟了一个水阻。fCLK越大,水阻越小,像搬运工来回搬水的频率提高了;水容2越大,水阻也越小,像搬运工每次搬水的水桶更大一些。


完全类似的,电路中的积分器,如图3右侧图,它的电阻RSC,也可以通过上述方法实现程控的改变,即用左侧电路代替右侧标准积分器。


图3:开关电容模块取代电阻用于积分器


图左侧是开关电容模块取代可变电阻的积分器电路。开关电容模块为绿色虚框内电路,由两个开关SW1和SW2,一个电容C1组成。在外部时钟fCLK作用下,形成两个开关控制信号——高电平对应开关闭合,低电平对应开关断开。往复之下,开关电容模块则可以视为一个电阻RSC,其阻值与外部时钟频率fCLK,电容C2相关:


上式很容易便可证明:


在Φ1阶段,存在一个uI给电容C2充电的过程,C2得到电荷为:


在Φ2阶段,电容C2通过SW2的闭合,接入到积分器运放的负输入端,电容C2中的电荷,将迅速、全部转移给电容C1,使得C2电压为0——运放负输入电位变为0V,这样才会虚短,当然C2的电荷也变为0。


这样,在一个完整的周期内,电容C2从uI转移走的电荷总量为U1C2,如果频率为fCLK,则1秒内,电容C2从uI转移走的电荷总量为:


而一个标准积分器如图右侧,流过电阻RSC的电流为:


在1秒内,转移给后续电路的电荷总量为:


开关电容模块要模拟标准积分器,则两个电荷应相同:


即:


将开关电容积分器用于滤波器,形成开关电容滤波器。至此,我们能够用一个开关电容模块,形成一个可变时间常数的积分器,可以称之为开关电容积分器,其时间常数可以用外部提供的fCLK控制。我们将其用于取代传统滤波器中的积分器,就可以用fCLK控制滤波器的关键参数了。


这就是开关电容滤波器的核心原理。只要传统滤波器中存在积分器,且积分时间常数会影响滤波器的关键参数,那么,用开关电容积分器代替它,就一定能够做出一个“用外部fCLK控制截止频率”的程控滤波器,即开关电容滤波器。


比如图4所示的状态可变型滤波器,其中含有A2和A3两个积分器,而且从传函可以看出,积分器的时间常数对特征频率是直接影响的,其中的低通输出为:


图4:状态可变型滤波器


如果仅将C1和R4组成的积分器,用开关电容积分器代替,那么当外部输入时钟fCLK改变时,其特征频率将随着改变。


Biquad滤波器,内部也具有积分器,如图5所示。它本身具有低通和带通输出,经过合适的加法运算,可以实现更为丰富多彩的滤波效果。


图5:Biquad滤波器


绝大多数开关电容滤波器内部,都采用Biquad滤波器——用开关电容积分器,取代图中的积分器,其实就是用开关电容形成的电阻,取代图中的R4。低通增益为:


从其低通表达式可看出,改变电阻 R4,确实可以改变滤波器特征频率。


温馨提示

不知道这部分内容,大家有木有看懂呢?若是没明白,可下载《新概念模拟电路》系列书籍查看更详细的解说哦~

第一本:

《晶体管》

第二本:

《负反馈和运算放大器基础》

第三本:

《运放电路的频率特性和滤波器》

第四本:

《信号处理电路》

亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论 (0)
  • RD-03E_V1.0的使用手册包含设备的基本功能、硬件规格、软件配置和安装条件等详细信息。以下是一些可能包含在手册中的关键信息:基本功能:介绍RD-03E的主要功能和技术特点,例如精准测距或手势识别能力。硬件规格:提供RD-03E模块的详细硬件参数,包括尺寸、接口类型、电气特性等。软件配置:说明如何进行软件设置,包括固件升级、参数调整等操作指南。安装条件:描述模块的工作环境要求,如温度范围、湿度限制等。烧录说明:指导如何使用支持的工具(如keil 5 IDE)和烧录器(如CMSIS-DAP、J
    丙丁先生 2024-03-16 12:54 79浏览
  • 1. 整流桥功能介绍整流桥在电子领域中扮演着至关重要的角色,为各种电子设备和电路提供了稳定的电源。整流桥的主要作用是将交流电信号转换为直流电信号。当交流电信号通过整流桥时,它会使得只有一个方向的电流能够通过,从而实现了将交流电信号转换为单向的直流电信号。在一些手持设备需要小巧轻便的整流桥来将交流电转换为直流电。医疗器械:一些便携式医疗器械或医疗监测设备,由于需要经常携带和移动,通常采用小体积的整流桥设计。智能家居产品:如智能插座、智能灯具等,由于需要集成在家居环境中,因此需要小体积的整流桥来满足
    上海雷卯电子 2024-03-16 14:07 119浏览
  • 来源:虹科汽车电子 虹科技术 | PCAN View功能细讲:从实时监测到错误帧分析原文链接:https://mp.weixin.qq.com/s/yOonZ5NqSCnKjURr9hNC6A欢迎关注虹科,为您提供最新资讯!#PCAN #CAN总线 #工业通讯导读相信使用过PCAN工具的朋友都知道虹科PCAN-View这款免费软件,它具有直观的用户界面,可以实时监测和分析CAN总线上的数据帧,并提供过滤、发送和报文记录。但你知道吗?它其实不只是简单收发报文,虹科PCAN-View还能自动检测和报
    虹科电子科技 2024-03-18 15:48 102浏览
  • 电脑上的很多东西都是赚钱的手段,知道了就轻松自在。如果你在Win10、11等安装应用程序,出现:应用程序无法启动,因为应用程序的并行配置不正确。有关详细信息,请参阅应用程序事件日志,或使用命令行sxstrace.exe工具。你各种删除再安装,清理注册表,各种残留清理,各种模块开关设置、甚至重装系统,都不行,你可以考虑安装一下:通过微软网站:Microsoft visual C++ 2005Microsoft visual C++ 2008因为微软自带系统没有这两个基础程序,旧的应用程序多数要用的
    老黄姓黄 2024-03-17 15:59 186浏览
  • 导读:相信使用过PCAN工具的朋友都知道虹科PCAN-View这款免费软件,它具有直观的用户界面,可以实时监测和分析CAN总线上的数据帧,并提供过滤、发送和报文记录。但你知道吗?它其实不只是简单收发报文,虹科PCAN-View还能自动检测和报告CAN总线上的错误帧,帮助用户快速发现和解决通信问题。无论是在汽车、工业自动化还是嵌入式系统领域, 虹科PCAN-View都是一个功能丰富且广泛应用的工具,为用户优化CAN总线系统的性能和提升通信的可靠性提供了极大的帮助。本文带你一起走进这些功能细节,深入
    虹科汽车智能互联 2024-03-18 13:54 115浏览
  • 导读:网关设备是确保数据流畅通信的关键。虹科PCAN系列网关凭借卓越性能和创新技术,为众多应用提供了高效稳定的解决方案。本文将深入探讨虹科PCAN系列网关内部存储空间,特别是EEPROM和SPI Flash的配置与利用,并解析如何通过C编程实现快速实时的信号存读。通过虹科PCAN-Router FD的实例,我们将展示这些存储空间如何助力网关设备在复杂环境中保持卓越性能。一、网关内部存储空间概览网关的内部存储空间经过精心设计,旨在满足快速、稳定的数据处理需求。除了常规的RAM外,虹科PCAN系列网
    虹科汽车智能互联 2024-03-18 13:56 94浏览
  • 直流电机是现代社会中无处不在的动力装置,但它们也不是永远运转的机器。让我们一起来了解一下,为什么直流电机会失效,以及我们可以采取哪些措施来延长它们的寿命。  1. 人为因素的影响: 操作失误是直流电机失效的一个重要因素。粗暴地操控电机,比如不小心让它掉落或者使用不当,都可能导致内部零件的损坏,从而使电机无法正常工作。此外,静电放电也是一个需要重视的问题,特别是对于无刷电机而言。静电放电可能会损坏电机内部的传感器,进而影响其控制与反馈系统。 2. 环境因素的考量: 环境条件对直流电
    艾迈斯电子 2024-03-16 11:29 78浏览
  • 使美国在21世纪保持安全,美国防部发布最新投资战略,12项领先发展科技,两项是传感器技术!近日(3月8日),美国国防部官网公布了《2024财年投资战略》(INVESTMENT STRATEGY FOR THE OFFICE OF STRATEGIC CAPITAL),确定了战略资本办公室(OSC)重点关注的优先关键组件技术行业投资战略,这是美国最新重量级投资计划。2022 年 12 月,美国国防部长劳埃德·奥斯汀三世 (Lloyd J. Austin III) 启动了战略资本办公室 (OSC),
    传感器专家网 2024-03-18 19:31 63浏览
  • 汽车氛围灯,顾名思义,是烘托车内氛围的照明灯,是汽车内饰情感化设计的一种体现。 一般有暖色(红色等)和冷色系(蓝色、紫色等)两种,在夜晚开启后绚丽浪漫,可营造车内情调,使得旅途并不是那么的枯燥无味,让人们拥有独特的驾驶体验。关于汽车氛围灯浪涌保护上海雷卯EMC小哥分析难点有以下几个方面:1. 复杂的电气环境:汽车的电气系统较为复杂,存在各种干扰源,如点火系统、电机、电子设备等,这可能会对氛围灯的浪涌保护造成挑战。2. 电压波动:汽车运行过程中,电源电压可能会出现较大的波动,例如启动引擎或电器设备
    上海雷卯电子 2024-03-16 13:51 95浏览
  • 安装Ubuntu后,可能会影响到Windows 10的启动方式,特别是在使用双系统引导时。这可能是导致您无法通过按F8进入安全模式的原因。以下是一些可能的原因和解决方法:启动管理器更改:安装Ubuntu后,GRUB或其他启动管理器可能成为默认的启动引导程序。这些启动管理器可能不会像Windows那样响应F8键进入安全模式的指令。快速启动功能:Windows 10的“快速启动”功能可能会影响您进入安全模式的能力。当启用快速启动时,系统会跳过某些启动步骤,这可能会阻止您通过F8进入安全模式。系统文件
    丙丁先生 2024-03-19 08:54 46浏览
  • 本书涵盖了边缘计算的各个方面,通过这本书可以对边缘计算有比较全面的认识。书中从边缘计算的发展历史到边缘计算的硬件,存储,通信,安全性,架构,数据处理,开源框架等方面概括性的介绍了边缘计算各个方面涉及的内容。由于本人是通信运营商的一线网络员工,所以对书中的通信内容比较感兴趣,大致介绍一下书中相关内容。翻译搜索复制5G的发展无疑促进了边缘计算的应用,5G设计之初其实就是为万物互联而生的,只不过现阶段的大部分的用户只能感受到其中的一个业务场景——eMBB,eMBB为增强移动宽带,对应的是要求高速,大带
    lospring3 2024-03-16 11:10 115浏览
  • 总结:科普量子计算机的水书。至少第一章是在科普量子计算机。唯一有点用的就是我上面这一张照片里面的笔记。上面说了为什么量子计算机会比传统计算机运算速度快的原因:因为传统计算机一位只能有一个数字,但是量子计算机可以0和1叠加起来显示。这样就造成了传统计算机需要运行很多遍的东西,而量子计算机不管多少多难都只用计算一次。(前提是量子比特位够长)---------------------------------------------------------------------------------
    youyeye 2024-03-17 17:04 140浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期推荐艾迈斯欧司朗首款支持UV-A辐射、环境光闪烁检测功能的微型环境光传感器TSL2585。TSL2585尺寸小巧,采用L2.0mm xW1.0mm xH0.35mm 6引脚OLGA超薄封装,非常适用于可穿戴设备以及手机等这类产品尺寸和厚度受到限制的应用。基于先进的干涉滤光技术,TSL2585的每一个感光像素上都精确沉积了特定光学设计的滤光膜,整体约5µm厚,由60多
    艾迈斯欧司朗 2024-03-18 18:35 102浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦