龙芯LA664性能追平AMDZen3

原创 铁君 2022-06-07 15:25


日前,龙芯发布了龙芯3C5000服务器处理器,并联合生态伙伴共同发布新一代国产服务器基础软硬件平台。这次发布会有两个亮点,一是3C5000处理器,二是3A6000仿真成绩。

龙芯3C5000弥补服务器不足

过去,龙芯一直致力于提升单核性能,没有盲目去堆核心数量。这种稳扎稳打的做法使龙芯在过去10年中IPC提升了3-4倍,在桌面CPU上成效立竿见影。

但在服务CPU上,由于国内ARM CPU往往采用“堆核战术”,也就是用64核、128核堆出一款服务器CPU,这导致龙芯的四核CPU虽然在单核性能上更好,但在多核性能上不如ARM CPU。这使龙芯在服务器CPU市场竞争中处于不利地位。

3C5000是龙芯第一款16CPU,采用完全自主的LoongArch指令架构,16核心单芯片unixbench分值9500以上,双精度计算能力达560GFlops16核处理器峰值性能与典型ARM 64核处理器的峰值性能相当,并支持最高16路互连,搭配新一代龙芯7A2000桥片,PCIe吞吐带宽比上一代提升400%以上。就SPEC2006测试来看,单核定点浮点Base分均大于10/G,单芯片分值超过200。可满足通用计算、大型数据中心、云计算中心的计算需求。该处理器通过芯片级安全机制可为等保2.0、可信计算、国密算法替代、网络安全漏洞防护等提供CPU级内生支持。

3C5000最大特点是单核性能强,特别是unixbench这种看重单核核内存性能,多核加速比很低的测试,龙芯只用16核就能跑到9500,某ARM CPU即便有64核也跑不到这个成绩。从公开的数据来看,3C5000的性能在信创市场足够用了,而且16核的核心是使其部署比较灵活。另外,龙芯还会有3D5000,也就是把两个3C5000封装到一起的胶水32核芯片,主要针对一些对性能有更高要求的场景。

龙芯3A6000 IPC追平Zen3

相对于3C5000,铁流认为3A6000更加值得关注。相对于一些技术引进CPU在引进海外技术后CPU IPC增长缓慢,性能提高基本依靠购买更好的EDA工具和买台积电更好的工艺。龙芯一直致力于提升CPU微结构设计水平来提升CPU的性能。CPUIPC在过去10年中提升了3-4倍,这使龙芯可以在制造工艺上落后技术引进的某ARM CPU一代的情况下,依然可以依靠CPU微结构设计水平做到性能持平或略优于技术引进的某ARM CPU。当龙芯与引进的某ARM CPU采用相同工艺时,龙芯可以凭借其IPC上的优势在性能上领先某ARM CPU


3A6000和3A5000采用相同制造工艺,龙芯依靠其设计能力把CPU性能大幅提升。从仿真成绩看,定点相对于3A5000提升30%,浮点相对于3A5000提升60%这种提升是非常骇人的——如果仿真成绩与最终成绩相当,那么,3A6000 SPEC06单核定点Base分大于13/G,浮点Base分大于16/G如果3A50002.5G2.8G,那么,3A6000SPEC06单核定点Base分大于35,浮点将大于45这个性能对于信创和日常使用而言都已经明显过剩了。

(gcc,1165G7测试过程的频率大约是 4.2GHz,换算IPC 13.3/G。下图5600G的编译参数和1165G7基本是一样的。感谢guee帮忙测试)

gcc,int_base 48.6。测试过程中频率基本保持在 4GHz,也就是说 IPC 为12/G,由于测试还有调优空间,及5600G的缓存要比5600X少一半,可以认为调优后的Zen3可以达到13/G


作为参照,11代酷睿的IPC大约是定点13+/G12代酷睿IPC大约是定点15+/GZen3IPC大约是定点13/G,龙芯LA664能够达到定点13/G,浮点16/G,这已经追平或接近Zen311代酷睿。

当下,在同频性能上追平11代酷睿和Zen3已经很不错了,唯一的问题就在于主频了。当龙芯把7000系列把工艺换成5/7nm就可以把主频做到3G以上,可以实现 SPEC06单核定点Base分大于40,浮点Base分大于50这种性能已经达到英特尔、AMD市场主流水平,即便龙芯平台移植了3A大型游戏,龙芯7000系列CPU也足以应对。

结语

经过20多年的磨砺,龙芯终于把LA664提升到11代酷睿和Zen3的水平。LA664不仅超越了现有技术引进的ARM CPU,还超越了某些ARM CPU厂商PPT上的下一代CPU核。即便是当下国内首屈一指的海光,如果不把CPU IPC提升30%以上,面对LA664也要败下阵来。

回溯历史,在10年前,龙芯的IPC是不如技术引进CPU的,某技术引进ARM CPUIPC是当时龙芯的2倍左右。然后,技术引进是存在代价和陷阱的,往往是知其然不知其所以然,进而导致发展后劲不足。

相比之下,自主研发虽然在起步阶段慢一些,苦一些,累一些,无法像技术引进CPU那要快速拿出产品,但自主研发发展后劲更足,这一点从龙芯过去10年的发展就能看出来。

龙芯的性能已经不再是应用的障碍,唯一的障碍是软件生态。期待龙芯能以应用为阶梯,在合作伙伴的帮助下循序渐进构建可以与Wintel、AA体系相媲美的自主技术体系。


铁君 集成电路 人工智能
评论 (0)
  • CS5511芯片设计原理图
    CS5511的LVDS输出可以配置为在120 Hz时支持高达1920x1080或在100 Hz时支持1920x1200。CS5511 LVDS接口支持单端口和双端口模式。CS5511具有5个配置引脚,可支持32个不同面板分辨率和LVDS工作模式与一个闪光图像的组合。
  • Geehy极海微控制器选型手册
    Geehy极海微控制器选型手册,产品基于Arm® Cortex®-M0+/M3/M4F/RISC-V内核,覆盖工业级/车规级/电机控制专用以及无线MCU,丰富的产品组合阵营,满足客户多样化产品应用需求!
  • 注释EN55014-1
    注释EN55014-1
  • Wayking RadarSensors_LRR7710_中英文产品手册
    Wayking RadarSensors_LRR7710_中英文产品手册
  • 首个基于Transformer的分割检测+视觉大模型视频课程(附源码+课件)
    众所周知,视觉系统对于理解和推理视觉场景的组成特性至关重要。这个领域的挑战在于对象之间的复杂关系、位置、歧义、以及现实环境中的变化等。作为人类,我们可以很轻松地借助各种模态,包括但不仅限于视觉、语言、声音等来理解和感知这个世界。现如今,随着 Transformer 等关键技术的提出,以往看似独立的各个方向也逐渐紧密地联结到一起,组成了“多模态”的概念。

    多功能
    通过引入灵活的提示引擎,包括点、框、涂鸦 (scribbles)、掩模、文本和另一幅图像的相关区域,实现多功能性;
    可组合
    通过学习联合视觉-语义空间,为视觉和文本提示组合实时查询,实现组合性,如图1所示;
    可交互
    通过结合可学习的记忆提示进行交互,实现通过掩模 引导的交叉注意力保留对话历史信息;
    语义感知
    通过使用文本编码器对文本查询和掩模标签进行编码,实现面向开放词汇分割的语义感知。

    超大规模视觉通用感知模型由超大规模图像、文本主干网络以及多任务兼容解码网络组成,它基于海量的图像和文本数据构成的大规模数据集进行预训练,用于处理多个不同的图像、图像-文本任务。此外,借助知识迁移技术能够实现业务侧小模型部署。

    超大规模视觉通用感知模型面临的挑战:
    (1)网络参数量庞大,通常超十亿参数,训练稳定性、收敛性、过拟合等问题相较于小网络挑战大很多。
    (2)原始数据集包含数十亿异质低质量图片与海量文本,多步训练以利用异质的多模态多任务数据,流程复杂,存在灾难性遗忘,难以定位精度等问题。
    (3)实验成本高,通常需要上千块GPU并行训练数周,需要研究者有敏锐的分析能力和扎实的知识基础。
    (4)工程挑战多,海量数据的吞吐,大型GPU集群上的并行算法,超大参数量模型的内存管理。

    提示工程
    大多数视觉数据集由图像和相应文本标签组成,为了利用视觉语言模型处理视觉数据集,一些工作已经利用了基于模版的提示工程,
    text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]  
    text_tokens = clip.tokenize(text_descriptions).cuda()

    除了此类大型视觉语言基础模型外,一些研究工作也致力于开发可以通过视觉输入提示的大型基础模型。例如,最近 META 推出的 SAM 能够执行与类别无关的分割,给定图像和视觉提示(如框、点或蒙版),指定要在图像中分割的内容。这样的模型可以轻松适应特定的下游任务,如医学图像分割、视频对象分割、机器人技术和遥感等

    从模型训练、模型分发、模型商业化,美图体系化地同创作者和开发者共建模型生态:

    (1)模型训练:提供二次训练能力,并持续不断地为创作者提供服务,包括培训、社区和模型创作大赛。

    (2)模型分发:创作者和开发者共建的模型可以在美图的产品内进行分发,在分发过程中持续优化模型。

    (3)模型商业化:行业客户可通过 MiracleVision 的 API 和 SDK 进行商业使用,创作者和开发者通过商业合作获得经济收益。
    通用视觉-语言学习的基础模型
    UNITER:结合了生成(例如掩码语言建模和掩码区域建模)和对比(例如图像文本匹配和单词区域对齐)目标的方法,适用于异构的视觉-语言任务。
    Pixel2Seqv2:将四个核心视觉任务统一为像素到序列的接口,使用编码器-解码器架构进行训练。
    Vision-Language:使用像 BART 或 T5 等预训练的编码器-解码器语言模型来学习不同的计算机视觉任务。
    模型整体结构上,抛弃了CNN,将 BERT 原版的 Transformer 开箱即用地迁移到分类任务上面,在使用大规模训练集的进行训练时,取得了极好的效果。
    同时,在大规模数据集上预训练好的模型,在迁移到中等数据集或小数据集的分类任务上以后,也能取得比CNN更优的性能。
    模型整体结构如下图所示,完全使用原始 BERT 的 Transformer 结构,主要是对图片转换成类似 token 的处理,原文引入了一个 patch 的概念,首先把图像划分为一个个的 patch,然后将 patch 映射成一个 embedding,即图中的 linear projection 层,将输入转换为类似 BERT 的输入结构,然后加上 position embedding,这里的 position 是1D的,最后加上一个learnable classification token 放在序列的前面,classification由 MLP 完成。

    这里我们用 RAM 提取了图像的语义标签,再通过将标签输入到 Grounding-DINO 中进行开放世界检测,最后再通过将检测作为 SAM 的提示分割一切。目前视觉基础大模型可以粗略的归为三类:
    textually prompted models, e.g., contrastive, generative, hybrid, and conversational;
    visually prompted models, e.g., SAM, SegGPT;
    heterogeneous modalities-based models, e.g., ImageBind, Valley.

    CoCa 通过将所有标签简单地视为文本,对 web-scale alt-text 和 annotated images 进行了从头开始端到端的预训练,无缝地统一了表示学习的自然 语言 监督。因此,CoCa 在广泛的下游任务上实现了最先进的性能,零样本传输或最小的任务特定适应, 跨越视觉识别(ImageNet,Kinetics-400/600/700,Moments-in-Time )、跨模式检索(MSCOCO、Flickr30K、MSR-VTT)、 多模式理解(VQA、SNLI-VE、NLVR2)和图像字幕(MSCOCO、NoCaps)。在 ImageNet 分类中,CoCa 获得了 86.3% 的 zero-shot top-1 准确率, frozen encoder and finetune classifier 是 90.6%,finetune encoder 可以到 91.0%。

    截止目前国内外已经发布了许多包括 NLP, CV 和 多模态在内的大规模模型,但是这些模型在应用落地上还是有待进一步探究的,目前应用落地较好的有华为 的盘古,在电网和金融圈都有应用;智源的悟道系列在诗词图文上都有广泛应用,可以帮助学生看图写作,根据文字生成插图等;百度的文心也发布了在金融方 面的应用。但截止目前为止大模型在实际中的应用还不是很理想,大模型发展的初衷是使用一个预训练好的大模型代替一堆小作坊似的根据不同任务训练的小模 型,通过模型蒸馏知识迁移等技术在小模型上使用少量数据集达到超过原来小模型性能的目标。CV 大模型在应用上的一个难点是与实际应用相结合,目前社会中 用的较多的视觉相关的深度学习模型主要包括物体检测,人脸识别以及缺陷检测(部分)相比 NLP 模型在实际中的使用少很多,因此将 CV 模型与实际生产相 结合发现更多的应用场景很关键。另外一个 CV 大模型应用的难点就是如何快速高效的使用蒸馏和知识迁移技术提升下游任务的性能,这两点难题的解决在 CV 大模型的实际应用中都刻不容缓。

    总结起来,将大模型应用于更高分辨率的下游视觉任务具有以下好处:提高感知能力、改善定位精度、提升语义理解、改善细节保留和边缘清晰度、增加鲁棒性和泛化能力,以及推动研究进展。这些好处使得大模型在处理高分辨率图像时能够获得更准确、更细致和更真实的结果。随着深度学习和计算资源的不断发展,我们可以期待更先进的大模型和相关技术的出现,进一步推动计算机视觉在高分辨率图像任务中的应用和突破

  • 首个基于Transformer的分割检测+视觉大模型视频课程(23年新课+源码+课件)
    自动驾驶是高安全型应用,需要高性能和高可靠的深度学习模型,Vision Transformer是理想的选摔。现在主流的自动驾驶感知算法基本都使用了Vision Transformer相关技术,比如分割、2D/3D检测,以及最近大火的大模型 (如SAM),Vision Transformer在自动驾驶领域的落地方面遍地开花。5一方面,在自动驾驶或图像处理相关算法岗位的面试题中,Vision Transformer是必考题,需要对其理论知识有深入理解,并且在项目中真实的使用过相关技术。

    Transformer出自于Google于2017年发表的论文《Attention is all you need》,最开始是用于机器翻译,并且取得了非常好的效果。但是自提出以来,Transformer不仅仅在NLP领域大放异彩,并且在CV、RS等领域也取得了非常不错的表现。尤其是2020年,绝对称得上是Transformer的元年,比如在CV领域,基于Transformer的模型横扫各大榜单,完爆基于CNN的模型。为什么Transformer模型表现如此优异?它的原理是什么?它成功的关键又包含哪些?本文将简要地回答一下这些问题。

    我们知道Transformer模型最初是用于机器翻译的,机器翻译应用的输入是某种语言的一个句子,输出是另外一种语言的句子。
    var i *int = nil
    fmt.Println("i.size:", unsafe.Sizeof(i)) //8

    var i8 *int8 = nil
    fmt.Println("i8.size:", unsafe.Sizeof(i8)) //8

    var s *string = nil
    fmt.Println("s.size:", unsafe.Sizeof(s)) //8

    var ps *struct{} = nil
    fmt.Println("ps.size:", unsafe.Sizeof(ps)) //8

    var si []int = nil
    var si1 []int = nil
    fmt.Println("si.size:", unsafe.Sizeof(si)) //24

    var ii interface{} = nil
    fmt.Println("ii.size:", unsafe.Sizeof(ii)) //16
    我们以生成我,爱,机器,学习,翻译成<bos>,i,love,machine,learning,<eos>这个例子做生成过程来解释。
    训练:

    把“我/爱/机器/学习”embedding后输入到encoder里去,最后一层的encoder最终输出的outputs [10, 512](假设我们采用的embedding长度为512,而且batch size = 1),此outputs 乘以新的参数矩阵,可以作为decoder里每一层用到的K和V;
    将<bos>作为decoder的初始输入,将decoder的最大概率输出词向量A1和‘i’做cross entropy(交叉熵)计算error。
    将<bos>,“i” 作为decoder的输入,将decoder的最大概率输出词 A2 和‘love’做cross entropy计算error。
    将<bos>,“i”,“love” 作为decoder的输入,将decoder的最大概率输出词A3和’machine’ 做cross entropy计算error。
    将<bos>,“i”,"love ",“machine” 作为decoder的输入,将decoder最大概率输出词A4和‘learning’做cross entropy计算error。
    将<bos>,“i”,"love ",“machine”,“learning” 作为decoder的输入,将decoder最大概率输出词A5和终止符做cross entropy计算error。
    那么并行的时候是怎么做的呢,我们会有一个mask矩阵在这叫seq mask,因为他起到的作用是在decoder编码我们的target seq的时候对每一个词的生成遮盖它之后的词的信息。
    func main() {
    s := []string{"a", "b", "c"}
    fmt.Println("s:origin", s)
    changes1(s)
    fmt.Println("s:f1", s)

    changes2(s)
    fmt.Println("s:f2", s)

    changes3(s)
    fmt.Println("s:f3", s)
    }

    func changes1(s []string) {
    var tmp = []string{"x", "y", "z"}
    s = tmp
    }

    func changes2(s []string) {
    // item只是一个副本,不能改变s中元素的值
    for i, item := range s {
    item = "d"
    fmt.Printf("item=%s;s[%d]=%s", item, i, s[i])
    }
    }

    func changes3(s []string) {
    for i := range s {
    s[i] = "d"
    }
    }

    首先我们需要为每个输入向量(也就是词向量)创建3个向量,分别叫做Query、Key、Value。那么如何创建呢?我们可以对输入词向量分别乘上3个矩阵来得到Q、K、V向量,这3个矩阵的参数在训练的过程是可以训练的。注意Q、K、V向量的维度是一样的,但是它们的维度可以比输入词向量小一点,比如设置成64,其实这步也不是必要的,这样设置主要是为了与后面的Mulit-head注意力机制保持一致(当使用8头注意力时,单头所处理的词向量维度为512/8=64,此时Q、K、V向量与输入词向量就一致了)。我们假设输入序列为英文的"Thinking Machines"
    想要深度理解Attention机制,就需要了解一下它产生的背景、在哪类问题下产生,以及最初是为了解决什么问题而产生。

    首先回顾一下机器翻译领域的模型演进历史:

    机器翻译是从RNN开始跨入神经网络机器翻译时代的,几个比较重要的阶段分别是: Simple RNN, Contextualize RNN,Contextualized RNN with attention, Transformer(2017),下面来一一介绍。

    「Simple RNN」 :这个encoder-decoder模型结构中,encoder将整个源端序列(不论长度)压缩成一个向量(encoder output),源端信息和decoder之间唯一的联系只是: encoder output会作为decoder的initial states的输入。这样带来一个显而易见的问题就是,随着decoder长度的增加,encoder output的信息会衰减。
    func main(){
    var c = make(chan int)
    fmt.Printf("c.pointer=%p\n", c) //c.pointer=0xc000022180
    go func() {
    c <- 1
    addChannel(c)
    close(c)
    }()

    for item := range c {
    //item: 1
    //item: 2
    fmt.Println("item:", item)
    }
    }

    func addChannel(done chan int) {
    done <- 2
    fmt.Printf("done.pointer=%p\n", done) //done.pointer=0xc000022180
    }
    在测试模型的时候,Test:decoder没有label,采用自回归一个词一个词的输出,要翻译的中文正常从encoder并行输入(和训练的时候一样)得到每个单词的embedding,然后decoder第一次先输入bos再此表中的id,得到翻译的第一个单词,然后自回归,如此循环直到预测达到eos停止标记
    type visit struct {
    a1  unsafe.Pointer
    a2  unsafe.Pointer
    typ Type
    }

    func deepValueEqual(v1, v2 Value, visited map[visit]bool) bool {
    if !v1.IsValid() || !v2.IsValid() {
    return v1.IsValid() == v2.IsValid()
    }
    if v1.Type() != v2.Type() {
    return false
    }

    // We want to avoid putting more in the visited map than we need to.
    // For any possible reference cycle that might be encountered,
    // hard(v1, v2) needs to return true for at least one of the types in the cycle,
    // and it's safe and valid to get Value's internal pointer.
    hard := func(v1, v2 Value) bool {
    switch v1.Kind() {
    case Pointer:
    if v1.typ.ptrdata == 0 {
    // not-in-heap pointers can't be cyclic.
    // At least, all of our current uses of runtime/internal/sys.NotInHeap
    // have that property. The runtime ones aren't cyclic (and we don't use
    // DeepEqual on them anyway), and the cgo-generated ones are
    // all empty structs.
    return false
    }
    fallthrough
    case Map, Slice, Interface:
    // Nil pointers cannot be cyclic. Avoid putting them in the visited map.
    return !v1.IsNil() && !v2.IsNil()
    }
    return false
    }

    if hard(v1, v2) {
    // For a Pointer or Map value, we need to check flagIndir,
    // which we do by calling the pointer method.
    // For Slice or Interface, flagIndir is always set,
    // and using v.ptr suffices.
    ptrval := func(v Value) unsafe.Pointer {
    switch v.Kind() {
    case Pointer, Map:
    return v.pointer()
    default:
    return v.ptr
    }
    }
    addr1 := ptrval(v1)
    addr2 := ptrval(v2)
    if uintptr(addr1) > uintptr(addr2) {
    // Canonicalize order to reduce number of entries in visited.
    // Assumes non-moving garbage collector.
    addr1, addr2 = addr2, addr1
    }

    // Short circuit if references are already seen.
    typ := v1.Type()
    v := visit{addr1, addr2, typ}
    if visited[v] {
    return true
    }

    // Remember for later.
    visited[v] = true
    }

    switch v1.Kind() {
    case Array:
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Slice:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    // Special case for []byte, which is common.
    if v1.Type().Elem().Kind() == Uint8 {
    return bytealg.Equal(v1.Bytes(), v2.Bytes())
    }
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Interface:
    if v1.IsNil() || v2.IsNil() {
    return v1.IsNil() == v2.IsNil()
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Pointer:
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Struct:
    for i, n := 0, v1.NumField(); i < n; i++ {
    if !deepValueEqual(v1.Field(i), v2.Field(i), visited) {
    return false
    }
    }
    return true
    case Map:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    for _, k := range v1.MapKeys() {
    val1 := v1.MapIndex(k)
    val2 := v2.MapIndex(k)
    if !val1.IsValid() || !val2.IsValid() || !deepValueEqual(val1, val2, visited) {
    return false
    }
    }
    return true
    case Func:
    if v1.IsNil() && v2.IsNil() {
    return true
    }
    // Can't do better than this:
    return false
    case Int, Int8, Int16, Int32, Int64:
    return v1.Int() == v2.Int()
    case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
    return v1.Uint() == v2.Uint()
    case String:
    return v1.String() == v2.String()
    case Bool:
    return v1.Bool() == v2.Bool()
    case Float32, Float64:
    return v1.Float() == v2.Float()
    case Complex64, Complex128:
    return v1.Complex() == v2.Complex()
    default:
    // Normal equality suffices
    return valueInterface(v1, false) == valueInterface(v2, false)
    }
    }
    这便是encoder的整体计算流程图了,Transformer模型中堆叠了多个这样的encoder,无非就是输出连接输入罢了,常规操作。
    最后再附上一个Transformer的代码实现,读者有兴趣可以跟着自己复现一下Transformer模型的代码。
       package main

       import (
           "log"
           "sync"
       )

       func init() {
           log.SetFlags(log.Lshortfile)
       }
       func main() {
           lock := sync.Mutex{}

           //Go 1.18 新增,是一种非阻塞模式的取锁操作。当调用 TryLock() 时,
           //该函数仅简单地返回 true 或者 false,代表是否加锁成功
           //在某些情况下,如果我们希望在获取锁失败时,并不想停止执行,
           //而是可以进入其他的逻辑就可以使用TryLock()
           log.Println("TryLock:", lock.TryLock())
           //已经通过TryLock()加锁,不能再次加锁
           lock.Lock()

       }

  • 13、如何解决直插差模电感的异响问题
    13、如何解决直插差模电感的异响问题
  • 浅谈地下污水厂智能照明控制应用

    结合某地下污水厂项目,从结构、系统组成、系统功能、控制要求、场景模式等方面介绍了地下污水厂智能照明控制系统,探索了一套适用于地下污水厂的智能照明控制策略,以确保地下污水厂正常运行的照明需求。

  • RadarSensors_ARS408-21_cn数据手册
    RadarSensors_ARS408-21_cn数据手册
  • 特斯拉电路图.rar
    特斯拉电路图,欢迎大家下载
  • ECG前置电路设计
    TI出的一个经验文档,讲的很不错
  • [完结19章]SpringBoot开发双11商品服务系统
    今天给大家分享一下关于SpringBoot开发双11商品服务系统的整个流程,我将深度还原大厂实习期技术成长全流程,让你收获大厂项目开发全流程与实战经验,具备应对大流量场景问题的解决能力,全面助力提升实习/转正/跳槽表现力与成功率。


    Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。通过这种方式,Spring Boot致力于在蓬勃发展的快速应用开发领域(rapid application development)成为领导者。

    目的
    让大家更容易使用 spring,更容易集成各种常用的中间件、开源软件。
    SpringBoot 基于 Spring 开发, SpringBoot 本身并不提供 Spring 框架的核心特性以及扩展功能,只是用于快速、敏捷地开发新一代基于 Spring 框架的应用程序。
    SpringBoot 不是用来替代 spring 的解决方案,而是和 spring 框架紧密结合提升 spring 开发者体验的工具。

    准备测试数据
    我们先导入准备好的测试数据,这个测试数据是一份商品数据。

    字段包含商品id,name(商品名)
    last_month_sales(最近一个月的销量)
    favorites(收藏数)这几个字段,我们主要是通过商品名来搜索。
    首先我先先创建一个商品索引
    PUT goods
    {
      "settings": {
        "number_of_shards": 1,
        "number_of_replicas": 0
      },
      "mappings": {
        "properties": {
          "id": {
            "type": "keyword",
            "doc_values": false,
            "norms": false,
            "similarity": "boolean"
          },
          "name": {
            "type": "text"
          },
            "price": {
            "type": "double"
          },
          "last_month_sales": {
            "type": "long"
          },
          "favorites": {
            "type": "long"
          },
          "year":{
            "type": "short"
          }
        }
      }
    }
    千里之行,始于足下。想要舒舒服服地使用Spring框架,就要把它的开发环境配置好,这对它好,也对我好。

    1. jdk 的配置       
    使用 IDEA 进行开发,在 IDEA 中配置 jdk 的方式很简单,打开 File->Project Structure选择 SDKs。
    在 JDK home path 中选择本地 jdk 的安装目录。
    在 Name 中为 jdk 自定义名字通过以上三步骤,即可导入本地安装的 jdk。如果是使用 STS 或者 eclipse 可以通过两步骤添加:
    window->preference->java->Instralled JRES 来添加本地 jdk。
    window-->preference-->java-->Compiler 选择 jre,和 jdk 保持一致。
    PUT test_index/_doc/1
    {
      "string_field":"imooc",
      "int_field": 100,
      "float_field":3.14,
      "bool_field":true,
      "date_field":"2022/03/16",
      "obj_field":{"key1":"value1","key2":100},
      "array_field1":[100,3.14],
      "array_field2":[100,"200"],
      "array_field3":["2022/03/16","100"],
      "array_field4":["100","2022/03/16"],
      "null_field":null
      }
      创建 Spring Boot 项目后需要进行 maven 配置。打开 File->settings,搜索 maven,配置一下本地的 maven 信息。在 Maven home directory 中选择本地 Maven 的安装路径;在 User settings file 中选择本地 Maven 的配置文件所在路径。在配置文件中配置一下国内阿里的镜像,这样在下载 maven 依赖时,速度会变得很快。
    {
      "test_index" : {
        "mappings" : {
          "properties" : {
            "array_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            },
            "bool_field" : {
              "type" : "boolean"
            },
            "date_field" : {
              "type" : "date",
              "format" : "yyyy/MM/dd HH:mm:ss||yyyy/MM/dd||epoch_millis"
            },
            "float_field" : {
              "type" : "float"
            },
            "int_field" : {
              "type" : "long"
            },
            "obj_field" : {
              "properties" : {
                "key1" : {
                  "type" : "text",
                  "fields" : {
                    "keyword" : {
                      "type" : "keyword",
                      "ignore_above" : 256
                    }
                  }
                },
                "key2" : {
                  "type" : "long"
                }
              }
            },
            "string_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            }
          }
        }
      }
    }

    从以上结果中,我们可以看到 Spring Boot 通过MVN方式自动为项目配置了对应的 springframework、logging、jackson 以及 Tomcat 等依赖,而这些正是我们在开发 Web 项目时所需要的。

    那么细心的同学可能会发现一个问题,即在以上 pom.xml 的配置中,引入依赖 spring-boot-starter-web 时,并没有指明其版本(version),但在依赖列表中,我们却看到所有的依赖都具有版本信息,那么这些版本信息是在哪里控制的呢? 
    {
      "_index" : "test_index",
      "_id" : "1",
      "_version" : 1,
      "_seq_no" : 0,
      "_primary_term" : 1,
      "found" : true,
      "_source" : {
        "string_field" : "Chan",
        "int_field" : 100,
        "int_string_field" : "100",
        "float_field" : 3.14,
        "bool_field" : true,
        "date_field" : "2022/03/16",
        "obj_field" : {
          "key1" : "value1",
          "key2" : 100
        },
        "array_field" : [
          "value1",
          "100"
        ],
        "null_field" : null
      }
    }
    spring-boot-starter-parent 是所有 Spring Boot 项目的父级依赖,它被称为 Spring Boot 的版本管理中心,可以对项目内的部分常用依赖进行统一管理。

    <parent>    

            <groupId>org.springframework.boot</groupId>    

            <artifactId>spring-boot-starter-parent</artifactId>    

            <version>2.5.6</version>    

            <relativePath/> 

    </parent>

    Spring Boot 项目可以通过继承 spring-boot-starter-parent 来获得一些缺省的配置内容,它主要提供了以下特性:

    默认 JDK 版本(Java 8)

    默认字符集(UTF-8)

    依赖管理功能

    资源过滤

    默认插件配置识别 

    application.properties 或 application.yml 类型的配置文件
    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":false 
      }
    }
    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":"strict" 
      }
    }


    POST test_index/_doc/2
    {
      "field1":{
       "field2":"imooc ES" 
      }
    }

    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    以下就是本文的全部内容,感谢大家观看
  • 14、小电流贴片共模电感更换需要注意些什么.
    14、小电流贴片共模电感更换需要注意些什么.
  • XPM52C规格书 65W USB PD 多协议降压芯片
    XPM52C 是一款集成同步开关的降压转换器,支持多种输出快充协议、支持 USB Type-C 和 PD 等多种快充协议,包括 USB Type-C 和 PD 协议,高通 QC2.0/3.0/3.0+,华 为 FCP/SCP/HVSCP,VOOC 2.0/4.0 协议,联发科 PE,三星 AFC,USB BC1.2 DCP 以及 Apple 2.4A 充电规范,为车载充电器、各种快充适配器、智能排插等供电设备提供完 整的解决方案。
  • 12、如何挑选立式磁棒电感厂家
    12、如何挑选立式磁棒电感厂家
  • 作者:Shawn Prestridge,IAR资深现场应用工程师 / 美国FAE团队负责人 安全一直都是一个非常热门的话题,似乎每周都会听到这样的消息:某某公司如何被入侵,数百万用户的数据被泄露。 我们看到这么多的安全问题,部分原因在于我们对待安全的方式:安全性通常被认为是事后考虑的问题,是在开发结束时才添加到设备上的东西。然而,复杂的系统,尤其是嵌入式系统,有一个很大的攻击面,这让攻击者有机可乘,能够在“盔甲”上找到破绽。如果你去研究大部分黑客试图入侵系统的方式,你很快就会发现,在他们的武
    电子科技圈 2023-11-30 14:43 80浏览
  • 非接触精密洁净设备在锂电池领域有广泛的应用,主要用于生产制造过程中的Roll to Roll及sliting工艺、电芯预处理等环节。针对卷板、薄膜、膜片制造工艺中的大宽幅、裁切后边部处理再清洁、除异物、毛刺等需求,非接触精密洁净设备通过高旋轴与特制气嘴的优化排列,可满足现有干燥炉、再复合、精度提升等新工艺中的洁净度要求。具体的应用环节如下:锂电池生产过程中的Roll to Roll工艺和sliting工艺,非接触精密洁净设备通过高精度的洁净环境和控制,保证了锂电池的制造质量和安全性。电芯预处理过
    SHLZ 2023-11-30 11:49 100浏览
  • 在电力系统中,过电压保护器是一种重要的设备,它对电力设备的安全运行具有重要的作用。下面我们来了解一下过电压保护器的基本结构。过电压保护器通常由三个主要部分组成:间隙、非线性元件和触发器。1. 间隙:间隙是过电压保护器的基本结构之一,它是由两个金属电极组成的,通常采用球形或棒形结构。间隙的间距通常在几毫米到几厘米之间,它能够承受一定的电压,并在过电压条件下进行放电。2. 非线性元件:非线性元件是过电压保护器的另一个重要组成部分。它是一种特殊的电阻器,能够在高电压下呈现出非线性的特性。当电压超过一定
    保定众邦电气 2023-11-30 14:49 113浏览
  •    本文介绍在ALPS平台上进行SSL测试的内容和方法   什么是SSL SSL全称是Secure Sockets Layer,指安全套接字协议,为基于TCP的应用层协议提供安全连接;SSL介于TCP/IP协议栈的第四层和第五层之间,广泛用于电子商务、网上银行等。 SSL协议有三个版本,其中SSL2.0和3.0曾被广泛使用,其中SSLv3.0自1996提出并得到大规模应用成为了事实上的标准,在2015年才被弃用。1999年,IETF收纳了SSLv3.0并
    信而泰市场部 2023-11-30 15:08 76浏览
  • 随着汽车电子进入电动化+智能网联的时代,新能源、车联网、智能化、电动化四个领域带来了CAN数据的需求,企业车队管理需要数据,汽车运营需要数据,改装、解码、匹配工具打造需要数据,现在就连简单的LED汽车照明控制,也需要匹配数据。这一切,逃脱不了CAN、LIN、SENT、BSD、MOST各种协议下,不同ECU控制单元在不同年份,不同款式下的数据,可以这么说,在新能源这个前提下,我们要做的工作和要做的事情可能要更为复杂、多变。 前日,我拿出一份13年左右丰田的CAN协议,里边包括车灯控制、车
    lauguo2013 2023-11-30 15:45 79浏览
  • 国产固态光耦是一种具有独特优势的国内生产的固态光耦产品。它在电气隔离和信号传输领域具有广泛应用,并在国内市场上取得了巨大成功。本文将详细分析国产固态光耦的优势和其在产品工程中的重要作用。国产固态光耦是一种电气隔离器件,基于发光二极管(LED)和光敏二极管(光电晶体管)的技术原理,用于隔离输入和输出端之间的电信号。相比传统的光耦(如液态光耦),国产固态光耦具有许多独特优势。首先,国产固态光耦具有高度可靠性。它采用无机封装材料和表面贴装技术,使其能够在各种恶劣环境中稳定工作。与传统的机械式继电器相比
    克里雅半导体科技 2023-11-30 11:19 59浏览
  • 前言 在网络部署之后和业务开展之前,运营商迫切希望了解当前网络的性能状态,以便为商业规划和业务推广提供必要的基础数据支持。因此,高可靠性和高精确度的性能测试方法对于运营商评判网络性能的优劣,显得尤为重要,而RFC 2544等传统测试标准已不足于鉴定当今的服务等级协议(SLA)。SLA是服务提供商(如ISP)及其最终用户之间的协议,它规定以太网服务的开通或验证必须进行测量,且必须达到SLA的规范要求。目前,对以太网服务进行测试和故障诊断的最佳选择无疑是ITU-T Y.1564标准。 &
    信而泰市场部 2023-11-30 15:06 73浏览
  • Achronix推出基于FPGA的加速自动语音识别解决方案 提供超低延迟和极低错误率(WER)的实时流式语音转文本解决方案,可同时运行超过1000个并发语音流2023年11月——高性能FPGA芯片和嵌入式FPGA(eFPGA IP)领域的领先企业Achronix半导体公司日前自豪地宣布:正式推出Achronix与Myrtle.ai合作的最新创新——基于Speedster7t FPGA的自动语音识别(ASR)加速方案。这一变革性的解决方案,实现了高精度和快速响应,可将超过1000个并发的实时
    电子科技圈 2023-11-30 11:52 121浏览
  • 教程背景通过之前的教程,我们已经为大家演示了宏集MC-Prime控制器的连接、试运行和CODESYS的安装,并创建了一个计数器项目。在本期教程中,我们将进一步深入,教大家如何使用CODESYS的可视化界面。一、两种可视化方式在CODESYS V3中,可视化界面分为两种类型:目标可视化和网络可视化。二者之间存在着一些本质上的区别。(一)目标可视化目标可视化(Target visualization)主要是针对一些带有集成屏幕的控制器(如宏集DC系列)。如果是没有屏幕的控制器,则需要通过在控制器上运
    工业物联网技术 2023-11-30 11:45 79浏览
  • 隔离驱动芯片在现代电子产品中扮演着至关重要的角色。它是一种专门设计用于电气隔离的集成电路芯片,能够保护信号传输过程中的安全性和稳定性。本文将介绍隔离驱动芯片的工作原理、应用领域以及其在产品设计中的重要性。隔离驱动芯片是一种将输入和输出端口完全隔离的器件。它通常由两个部分组成:输入端和输出端。输入端负责接收来自信号源的输入信号,并将其转换为适合输出端的电信号。输出端则将这些电信号转换为适合目标设备的信号,例如驱动电机、激活继电器或控制其他外部设备。隔离驱动芯片的工作原理是基于电气隔离的概念。它使用
    克里雅半导体科技 2023-11-30 11:22 60浏览
  • 印刷部分 这本书印刷和普通书籍不太一样,类似笔记本的手写体印刷和笔记的网格,有亲近感和新鲜感内容部分 分为通信工程 ;传感器工程;磁传感器工程;太阳电池功能几大部分通信电路是一种用于传输信息的电子电路,可以用于无线通信、有线通信和网络通信等各种通信系统中。传感器电路则是用于感知和测量环境参数的电路,可以探测光、温度、压力、湿度、运动等各种物理量。在学习通信电路方面,可能会接触到模拟通信电路和数字通信电路。模拟通信电路主要涉及模拟信号的传输和处理,如调制解调、信号放大、滤波等。数字通信电路则涉及数
    陇南有只大花猫 2023-11-30 19:01 95浏览
  • 听力危机不可不慎,助听器市场的发展概况根据世界卫生组织WHO于2021年所发布的世界听力报告(World report on hearing)统计,全球目前有20%左右的听损人口;其中「轻度」与「中度」听损人口就占了大约15亿人左右。台湾方面,根据2021年卫生福利部统计处的数据显示,台湾则约有12万人有听力损失的问题,其中更有高达56% (约71,543人)确诊为轻度听损。足以看出听力受损问题已逐渐成为全球新兴的健康议题。听力损失的成因及轻重程度因人而异,但无论如何,或多或少都会影响到我们的日
    百佳泰测试实验室 2023-11-30 17:26 90浏览
  •     按照 IPC术语,连接盘/Land 是指一块导体,通常用于连接和/或固定元器件的导电部分。    为了增强孔的机械强度,所有的金属化孔或者镀覆孔,在穿过每一层铜箔时,都应该有连接盘,连接盘的形状不限。前面提过的孔环也是连接盘的一种形式。在允许的条件下,孔环和连接盘的尺寸都要尽量大一些。    前面提到过,铜层图案(连接盘)和孔是在不同的工序制作的。由于加工公差的存在,用常见的圆形连接盘和圆孔来说,并不能保证孔和连接盘保持精确的同
    电子知识打边炉 2023-11-30 21:32 97浏览
  •    电源连接器的插针遭受损坏的情况非常普遍,这种故障会让连接器的电流传输受到影响,进而影响设备的正常使用,那是什么因素导致电源连接器的插针遭到损坏呢?下面Amass将为您分析其中的原因。   1、应用环境高温 1. 在高温环境下,电源连接器插针易受腐蚀影响,形成氧化层,损失接触压力,甚至可能发生接头烧损情况。对于这种环境,电源连接器需要具备耐高温性能,不仅需满足环境温度要求,还须考虑其在工作状态下的热量散发。  
    艾迈斯电子 2023-11-30 16:33 89浏览
  • 数字脉冲升级功能德思特Spectrum系列全部在售数字化仪和AWG产品(包括TS-M2p,TS-M4i,TS-DN2,TS-DN6型号产品),发布了新增的数字脉冲(DPG)升级功能,于11月15日正式推出。用户购买后,可自行通过对产品内置FPGA进行固件升级获取相关功能,无需返厂。该功能可以为原本的数字化仪或AWG产品增加3~4个独立的数字脉冲发生器通道,帮助用户实现测试系统中的一系列控制功能,为客户的产品升级和系统扩建提供了一种较低成本的选项。数字脉冲发生器技术浅析#01 数字脉冲发生器是什么
    虹科测试测量TM 2023-11-30 11:23 45浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦