总投资290亿!京东方拟投建第6代新型半导体显示器件

半导体前沿 2022-10-31 15:52


在全球显示产业的“至暗”时刻,下一轮新投资方向已经现显。京东方10月30日晚披露了《关于投资建设京东方第6代新型半导体显示器件生产线项目的公告》,着力布局VR(虚拟现实)显示产品市场,抓住元宇宙的商机。


该公司表示:“随着科技和产业生态的持续发展,VR产品需求持续释放,带动着相关产业链急速发展。作为VR产品核心器件的微显示产品也将迎来高速增长。为了满足市场需求,依据公司战略发展目标,在经过充分调研和论证的基础上,京东方科技集团股份有限公司下属控股子公司北京京东方创元科技有限公司拟在北京经济技术开发区投资建设应用LTPO技术的第6代新型半导体显示器件生产线项目,着力布局VR显示产品市场,进一步丰富公司产品结构,巩固公司半导体显示行业龙头地位。”


据了解,上述项目设地点位于北京经济技术开发区,主要产品为VR显示面板、MiniLED直显背板等高端显示产品。设计产能约50千片/月,建设周期自2023年至2025年,2025年量产,2026年满产。项目总投资为290亿元人民币(最终投资金额以经批准的可行性研究报告为准)。


关于项目的资金来源,据京东方介绍:“项目公司初始注册资本金1,000 万元,后续各股东增资至145亿元,其中京东方负责筹集115亿元,北京亦庄国际投资发展有限公司牵头筹集30亿元,通过北京屹唐智显科技创新产业合伙企业(有限合伙)(简称“屹唐智显”)投资至项目公司,项目总投资与注册资本的差额部分通过项目公司外部融资解决。”


京东方表示:“本项目密切围绕京东方的战略发展架构,是支撑战略目标实现的重要路径。通过布局LTPO技术积累超高分辨率半导体显示技术,巩固公司的核心竞争力;通过提前布局MiniLED尖端驱动架构,有效提升MiniLED产品综合竞争力;本项目面对VR等高端显示产品正吻合了面向应用场景的发展战略。因此,本项目的建设有助于提升公司高端显示器件产量和实现产业化,加速推动“屏之物联”战略落地,有利于聚集更广泛的资源要素,形成市场、技术、区域卡位,扩大规模优势,构筑更高竞争壁垒,巩固行业地位。”


来源:第一财经、集微网等



2021年半导体行业迎来超级景气周期,硅片需求持续旺盛,全球半导体硅片出货面积达142亿平方英寸,同比增长14%,市场规模达140亿美元。硅片行业高度集中,5大厂商(信越、Sumco、Siltronic、环球晶圆、SK Siltron)市场份额接近90%。


受益于产业链转移,2021年中国国内半导体材料销售额近120亿美元,同比增长22%,半导体材料产业迎来新一轮上升周期,大硅片占据重要份额。国内代表性企业沪硅产业、立昂微、中环、中欣晶圆、奕斯伟、鑫晶等纷纷扩充200mm与300mm硅片产能。2022年上半年市场火热,龙头企业的200mm硅片产能利用率高,300mm硅片产品的销量增长显著。


自动驾驶、AI等新兴产业将给半导体及大硅片带来哪些机遇?全球经济的不确定性,如何影响半导体硅片需求变化?美国芯片法案对国内半导体产业链将有哪些影响?企业该如何未雨绸缪,应对新一轮的机遇与挑战?


第五届中国半导体大硅片论坛将于2022年11月18日苏州召开。


会议由亚化咨询主办,多家领先大硅片企业和相关材料、设备商参与。重点探讨新形势下全球与中国半导体大硅片市场格局,大硅片项目规划与建设进展,供需与价格趋势,制造技术与关键材料、设备,以及电子级多晶硅最新进展等议题。


最新日程:


中国半导体大硅片论坛2022-会议日程

1118日,苏州

锐意进取满帆前行的国产大硅片

——上海新傲科技股份有限公司/沪硅产业(已定)

轻掺硅片的生产及应用

——上海超硅半导体有限公司(已定)

12CIS用硅片的特点简介

——杭州中欣晶圆半导体股份有限公司(已定)

电子级硅料的生产与国产化现状

——青海黄河上游水电开发有限责任公司(已定)

美国芯片法案与四方联盟(Chip4)对中国大陆芯片发展的影响

——罗仕洲博士 欢芯鼓伍创始人(已定)

主题待定

——安捷伦科技有限公司(已定)

全球大硅片供需与竞争格局

——寰球晶圆股份有限公司(邀请中

中国半导体级单晶炉市场与国产化情况

——浙江晶盛机电股份有限公司(邀请中)

新形势下中国集成电路与大硅片产业趋势

——天津中环领先材料技术有限公司(邀请中)

8英寸SiC衬底技术进展

——山东天岳先进材料科技有限公司(邀请中)

半导体级硅材料及部件生产技术

——宁夏盾源聚芯半导体科技股份有限公司(邀请中)


第五届中国半导体大硅片论坛2022的演讲征集已经开启!如果您有意向做演讲报告或赞助或参会,欢迎您与我们联系!


演讲主题包括但不限于:


1.新形势下中国集成电路与大硅片产业发展趋势

2.半导体行业市场对不同尺寸硅片需求

3.美国芯片法案对大硅片供应链的影响

4.中国大硅片最新项目规划与建设进展

5.已建成大硅片工厂生产运营经验

6.大硅片制造先进材料及设备

7.电子级多晶硅项目规划

8.硅外延片的市场供需及应用

9.单晶硅与大硅片先进制造工艺与技术

10.大硅片生产难点与解决方案

11.大硅片的质量控制及检测


亚化咨询重磅推出《中国半导体材料、晶圆厂、封测项目及设备中标、进口数据全家桶》。本数据库月度更新,以EXCEL表格的形式每月发送到客户指定邮箱。


  • 中国大陆半导体大硅片项目表(月度更新)

  • 中国大陆再生晶圆项目表(月度更新)

  • 中国大陆8英寸晶圆厂项目表(月度更新)

  • 中国大陆12英寸晶圆厂项目表(月度更新)

  • 中国大陆半导体封测项目表(月度更新)

  • 中国大陆电子特气项目表(月度更新)

  • 中国大陆半导体湿电子化学品项目表(月度更新)

  • 中国大陆晶圆厂当月设备中标数据表(月度更新)

  • 中国大陆上月半导体前道设备进口数据表(月度更新)

  • 中国大陆半导体大硅片项目地图(月度更新)

  • 中国大陆8英寸晶圆厂项目地图(月度更新)

  • 中国大陆12英寸晶圆厂项目地图(月度更新)

  • 中国大陆半导体封测项目分布图(月度更新)


亚化半导体数据库月度更新,包含最新资讯+最新项目进展,给您展现更全面更深入的中国半导体领域发展现状。


除月报之外,亚化咨询还推出了半导体细分产业链年度报告:

  • 《中国半导体大硅片年度报》
  • 《中国半导体湿电子化学品年度报告》
  • 《中国第三代半导体(碳化硅与氮化镓)年度报告》
  • 《中国半导体光刻产业链年度报告》
  • 《中国半导体电子气体年度报告》


如需了解或订阅亚化半导体数据全家桶及年度报告,欢迎和我们联系:


半导体前沿 半导体与材料:集成电路 (IC)、大硅片、晶圆制造、先进封装;市场、项目、技术、设备、产业园区.
评论 (0)
  • ECG前置电路设计
    TI出的一个经验文档,讲的很不错
  • 12、如何挑选立式磁棒电感厂家
    12、如何挑选立式磁棒电感厂家
  • 基于单片机的工业级液晶显示控制芯片
    TFT-LCD液晶显示控制芯片RA8889ML3N的优势:
    低功耗及功能强大:这款芯片最大支持分辨率为1366x2048,内置128Mb SDRAM,可为内容显示进行快速刷新,同时内置视频解码单元,支持JPEG/AVI硬解码播放,为普通单片机实现视频播放提供可能。
    支持多种接口:RA8889ML3N支持MCU端的8080/6800 8/16-bit 非同步并列接口和3/4线SPI及IIC串列接口,以及最大驱动1366x800分辨率的TFT LCD。
    显示功能强大:RA8889ML3N提供多段的显示记忆体缓冲区段,支持多图层功能,并提供画中画(PIP)、支持透明度控制与显示旋转镜像等显示功能。
    应用范围广:这款芯片广泛应用于自动化控制设备、电力监测控制、测量检测仪器仪表、电教设备、智能家电、医疗检测设备、车用仪表及工控自动化等领域。
  • 首个基于Transformer的分割检测+视觉大模型视频课程(23年新课+源码+课件)
    自动驾驶是高安全型应用,需要高性能和高可靠的深度学习模型,Vision Transformer是理想的选摔。现在主流的自动驾驶感知算法基本都使用了Vision Transformer相关技术,比如分割、2D/3D检测,以及最近大火的大模型 (如SAM),Vision Transformer在自动驾驶领域的落地方面遍地开花。5一方面,在自动驾驶或图像处理相关算法岗位的面试题中,Vision Transformer是必考题,需要对其理论知识有深入理解,并且在项目中真实的使用过相关技术。

    Transformer出自于Google于2017年发表的论文《Attention is all you need》,最开始是用于机器翻译,并且取得了非常好的效果。但是自提出以来,Transformer不仅仅在NLP领域大放异彩,并且在CV、RS等领域也取得了非常不错的表现。尤其是2020年,绝对称得上是Transformer的元年,比如在CV领域,基于Transformer的模型横扫各大榜单,完爆基于CNN的模型。为什么Transformer模型表现如此优异?它的原理是什么?它成功的关键又包含哪些?本文将简要地回答一下这些问题。

    我们知道Transformer模型最初是用于机器翻译的,机器翻译应用的输入是某种语言的一个句子,输出是另外一种语言的句子。
    var i *int = nil
    fmt.Println("i.size:", unsafe.Sizeof(i)) //8

    var i8 *int8 = nil
    fmt.Println("i8.size:", unsafe.Sizeof(i8)) //8

    var s *string = nil
    fmt.Println("s.size:", unsafe.Sizeof(s)) //8

    var ps *struct{} = nil
    fmt.Println("ps.size:", unsafe.Sizeof(ps)) //8

    var si []int = nil
    var si1 []int = nil
    fmt.Println("si.size:", unsafe.Sizeof(si)) //24

    var ii interface{} = nil
    fmt.Println("ii.size:", unsafe.Sizeof(ii)) //16
    我们以生成我,爱,机器,学习,翻译成<bos>,i,love,machine,learning,<eos>这个例子做生成过程来解释。
    训练:

    把“我/爱/机器/学习”embedding后输入到encoder里去,最后一层的encoder最终输出的outputs [10, 512](假设我们采用的embedding长度为512,而且batch size = 1),此outputs 乘以新的参数矩阵,可以作为decoder里每一层用到的K和V;
    将<bos>作为decoder的初始输入,将decoder的最大概率输出词向量A1和‘i’做cross entropy(交叉熵)计算error。
    将<bos>,“i” 作为decoder的输入,将decoder的最大概率输出词 A2 和‘love’做cross entropy计算error。
    将<bos>,“i”,“love” 作为decoder的输入,将decoder的最大概率输出词A3和’machine’ 做cross entropy计算error。
    将<bos>,“i”,"love ",“machine” 作为decoder的输入,将decoder最大概率输出词A4和‘learning’做cross entropy计算error。
    将<bos>,“i”,"love ",“machine”,“learning” 作为decoder的输入,将decoder最大概率输出词A5和终止符做cross entropy计算error。
    那么并行的时候是怎么做的呢,我们会有一个mask矩阵在这叫seq mask,因为他起到的作用是在decoder编码我们的target seq的时候对每一个词的生成遮盖它之后的词的信息。
    func main() {
    s := []string{"a", "b", "c"}
    fmt.Println("s:origin", s)
    changes1(s)
    fmt.Println("s:f1", s)

    changes2(s)
    fmt.Println("s:f2", s)

    changes3(s)
    fmt.Println("s:f3", s)
    }

    func changes1(s []string) {
    var tmp = []string{"x", "y", "z"}
    s = tmp
    }

    func changes2(s []string) {
    // item只是一个副本,不能改变s中元素的值
    for i, item := range s {
    item = "d"
    fmt.Printf("item=%s;s[%d]=%s", item, i, s[i])
    }
    }

    func changes3(s []string) {
    for i := range s {
    s[i] = "d"
    }
    }

    首先我们需要为每个输入向量(也就是词向量)创建3个向量,分别叫做Query、Key、Value。那么如何创建呢?我们可以对输入词向量分别乘上3个矩阵来得到Q、K、V向量,这3个矩阵的参数在训练的过程是可以训练的。注意Q、K、V向量的维度是一样的,但是它们的维度可以比输入词向量小一点,比如设置成64,其实这步也不是必要的,这样设置主要是为了与后面的Mulit-head注意力机制保持一致(当使用8头注意力时,单头所处理的词向量维度为512/8=64,此时Q、K、V向量与输入词向量就一致了)。我们假设输入序列为英文的"Thinking Machines"
    想要深度理解Attention机制,就需要了解一下它产生的背景、在哪类问题下产生,以及最初是为了解决什么问题而产生。

    首先回顾一下机器翻译领域的模型演进历史:

    机器翻译是从RNN开始跨入神经网络机器翻译时代的,几个比较重要的阶段分别是: Simple RNN, Contextualize RNN,Contextualized RNN with attention, Transformer(2017),下面来一一介绍。

    「Simple RNN」 :这个encoder-decoder模型结构中,encoder将整个源端序列(不论长度)压缩成一个向量(encoder output),源端信息和decoder之间唯一的联系只是: encoder output会作为decoder的initial states的输入。这样带来一个显而易见的问题就是,随着decoder长度的增加,encoder output的信息会衰减。
    func main(){
    var c = make(chan int)
    fmt.Printf("c.pointer=%p\n", c) //c.pointer=0xc000022180
    go func() {
    c <- 1
    addChannel(c)
    close(c)
    }()

    for item := range c {
    //item: 1
    //item: 2
    fmt.Println("item:", item)
    }
    }

    func addChannel(done chan int) {
    done <- 2
    fmt.Printf("done.pointer=%p\n", done) //done.pointer=0xc000022180
    }
    在测试模型的时候,Test:decoder没有label,采用自回归一个词一个词的输出,要翻译的中文正常从encoder并行输入(和训练的时候一样)得到每个单词的embedding,然后decoder第一次先输入bos再此表中的id,得到翻译的第一个单词,然后自回归,如此循环直到预测达到eos停止标记
    type visit struct {
    a1  unsafe.Pointer
    a2  unsafe.Pointer
    typ Type
    }

    func deepValueEqual(v1, v2 Value, visited map[visit]bool) bool {
    if !v1.IsValid() || !v2.IsValid() {
    return v1.IsValid() == v2.IsValid()
    }
    if v1.Type() != v2.Type() {
    return false
    }

    // We want to avoid putting more in the visited map than we need to.
    // For any possible reference cycle that might be encountered,
    // hard(v1, v2) needs to return true for at least one of the types in the cycle,
    // and it's safe and valid to get Value's internal pointer.
    hard := func(v1, v2 Value) bool {
    switch v1.Kind() {
    case Pointer:
    if v1.typ.ptrdata == 0 {
    // not-in-heap pointers can't be cyclic.
    // At least, all of our current uses of runtime/internal/sys.NotInHeap
    // have that property. The runtime ones aren't cyclic (and we don't use
    // DeepEqual on them anyway), and the cgo-generated ones are
    // all empty structs.
    return false
    }
    fallthrough
    case Map, Slice, Interface:
    // Nil pointers cannot be cyclic. Avoid putting them in the visited map.
    return !v1.IsNil() && !v2.IsNil()
    }
    return false
    }

    if hard(v1, v2) {
    // For a Pointer or Map value, we need to check flagIndir,
    // which we do by calling the pointer method.
    // For Slice or Interface, flagIndir is always set,
    // and using v.ptr suffices.
    ptrval := func(v Value) unsafe.Pointer {
    switch v.Kind() {
    case Pointer, Map:
    return v.pointer()
    default:
    return v.ptr
    }
    }
    addr1 := ptrval(v1)
    addr2 := ptrval(v2)
    if uintptr(addr1) > uintptr(addr2) {
    // Canonicalize order to reduce number of entries in visited.
    // Assumes non-moving garbage collector.
    addr1, addr2 = addr2, addr1
    }

    // Short circuit if references are already seen.
    typ := v1.Type()
    v := visit{addr1, addr2, typ}
    if visited[v] {
    return true
    }

    // Remember for later.
    visited[v] = true
    }

    switch v1.Kind() {
    case Array:
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Slice:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    // Special case for []byte, which is common.
    if v1.Type().Elem().Kind() == Uint8 {
    return bytealg.Equal(v1.Bytes(), v2.Bytes())
    }
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Interface:
    if v1.IsNil() || v2.IsNil() {
    return v1.IsNil() == v2.IsNil()
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Pointer:
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Struct:
    for i, n := 0, v1.NumField(); i < n; i++ {
    if !deepValueEqual(v1.Field(i), v2.Field(i), visited) {
    return false
    }
    }
    return true
    case Map:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    for _, k := range v1.MapKeys() {
    val1 := v1.MapIndex(k)
    val2 := v2.MapIndex(k)
    if !val1.IsValid() || !val2.IsValid() || !deepValueEqual(val1, val2, visited) {
    return false
    }
    }
    return true
    case Func:
    if v1.IsNil() && v2.IsNil() {
    return true
    }
    // Can't do better than this:
    return false
    case Int, Int8, Int16, Int32, Int64:
    return v1.Int() == v2.Int()
    case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
    return v1.Uint() == v2.Uint()
    case String:
    return v1.String() == v2.String()
    case Bool:
    return v1.Bool() == v2.Bool()
    case Float32, Float64:
    return v1.Float() == v2.Float()
    case Complex64, Complex128:
    return v1.Complex() == v2.Complex()
    default:
    // Normal equality suffices
    return valueInterface(v1, false) == valueInterface(v2, false)
    }
    }
    这便是encoder的整体计算流程图了,Transformer模型中堆叠了多个这样的encoder,无非就是输出连接输入罢了,常规操作。
    最后再附上一个Transformer的代码实现,读者有兴趣可以跟着自己复现一下Transformer模型的代码。
       package main

       import (
           "log"
           "sync"
       )

       func init() {
           log.SetFlags(log.Lshortfile)
       }
       func main() {
           lock := sync.Mutex{}

           //Go 1.18 新增,是一种非阻塞模式的取锁操作。当调用 TryLock() 时,
           //该函数仅简单地返回 true 或者 false,代表是否加锁成功
           //在某些情况下,如果我们希望在获取锁失败时,并不想停止执行,
           //而是可以进入其他的逻辑就可以使用TryLock()
           log.Println("TryLock:", lock.TryLock())
           //已经通过TryLock()加锁,不能再次加锁
           lock.Lock()

       }

  • 首个基于Transformer的分割检测+视觉大模型视频课程(附源码+课件)
    众所周知,视觉系统对于理解和推理视觉场景的组成特性至关重要。这个领域的挑战在于对象之间的复杂关系、位置、歧义、以及现实环境中的变化等。作为人类,我们可以很轻松地借助各种模态,包括但不仅限于视觉、语言、声音等来理解和感知这个世界。现如今,随着 Transformer 等关键技术的提出,以往看似独立的各个方向也逐渐紧密地联结到一起,组成了“多模态”的概念。

    多功能
    通过引入灵活的提示引擎,包括点、框、涂鸦 (scribbles)、掩模、文本和另一幅图像的相关区域,实现多功能性;
    可组合
    通过学习联合视觉-语义空间,为视觉和文本提示组合实时查询,实现组合性,如图1所示;
    可交互
    通过结合可学习的记忆提示进行交互,实现通过掩模 引导的交叉注意力保留对话历史信息;
    语义感知
    通过使用文本编码器对文本查询和掩模标签进行编码,实现面向开放词汇分割的语义感知。

    超大规模视觉通用感知模型由超大规模图像、文本主干网络以及多任务兼容解码网络组成,它基于海量的图像和文本数据构成的大规模数据集进行预训练,用于处理多个不同的图像、图像-文本任务。此外,借助知识迁移技术能够实现业务侧小模型部署。

    超大规模视觉通用感知模型面临的挑战:
    (1)网络参数量庞大,通常超十亿参数,训练稳定性、收敛性、过拟合等问题相较于小网络挑战大很多。
    (2)原始数据集包含数十亿异质低质量图片与海量文本,多步训练以利用异质的多模态多任务数据,流程复杂,存在灾难性遗忘,难以定位精度等问题。
    (3)实验成本高,通常需要上千块GPU并行训练数周,需要研究者有敏锐的分析能力和扎实的知识基础。
    (4)工程挑战多,海量数据的吞吐,大型GPU集群上的并行算法,超大参数量模型的内存管理。

    提示工程
    大多数视觉数据集由图像和相应文本标签组成,为了利用视觉语言模型处理视觉数据集,一些工作已经利用了基于模版的提示工程,
    text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]  
    text_tokens = clip.tokenize(text_descriptions).cuda()

    除了此类大型视觉语言基础模型外,一些研究工作也致力于开发可以通过视觉输入提示的大型基础模型。例如,最近 META 推出的 SAM 能够执行与类别无关的分割,给定图像和视觉提示(如框、点或蒙版),指定要在图像中分割的内容。这样的模型可以轻松适应特定的下游任务,如医学图像分割、视频对象分割、机器人技术和遥感等

    从模型训练、模型分发、模型商业化,美图体系化地同创作者和开发者共建模型生态:

    (1)模型训练:提供二次训练能力,并持续不断地为创作者提供服务,包括培训、社区和模型创作大赛。

    (2)模型分发:创作者和开发者共建的模型可以在美图的产品内进行分发,在分发过程中持续优化模型。

    (3)模型商业化:行业客户可通过 MiracleVision 的 API 和 SDK 进行商业使用,创作者和开发者通过商业合作获得经济收益。
    通用视觉-语言学习的基础模型
    UNITER:结合了生成(例如掩码语言建模和掩码区域建模)和对比(例如图像文本匹配和单词区域对齐)目标的方法,适用于异构的视觉-语言任务。
    Pixel2Seqv2:将四个核心视觉任务统一为像素到序列的接口,使用编码器-解码器架构进行训练。
    Vision-Language:使用像 BART 或 T5 等预训练的编码器-解码器语言模型来学习不同的计算机视觉任务。
    模型整体结构上,抛弃了CNN,将 BERT 原版的 Transformer 开箱即用地迁移到分类任务上面,在使用大规模训练集的进行训练时,取得了极好的效果。
    同时,在大规模数据集上预训练好的模型,在迁移到中等数据集或小数据集的分类任务上以后,也能取得比CNN更优的性能。
    模型整体结构如下图所示,完全使用原始 BERT 的 Transformer 结构,主要是对图片转换成类似 token 的处理,原文引入了一个 patch 的概念,首先把图像划分为一个个的 patch,然后将 patch 映射成一个 embedding,即图中的 linear projection 层,将输入转换为类似 BERT 的输入结构,然后加上 position embedding,这里的 position 是1D的,最后加上一个learnable classification token 放在序列的前面,classification由 MLP 完成。

    这里我们用 RAM 提取了图像的语义标签,再通过将标签输入到 Grounding-DINO 中进行开放世界检测,最后再通过将检测作为 SAM 的提示分割一切。目前视觉基础大模型可以粗略的归为三类:
    textually prompted models, e.g., contrastive, generative, hybrid, and conversational;
    visually prompted models, e.g., SAM, SegGPT;
    heterogeneous modalities-based models, e.g., ImageBind, Valley.

    CoCa 通过将所有标签简单地视为文本,对 web-scale alt-text 和 annotated images 进行了从头开始端到端的预训练,无缝地统一了表示学习的自然 语言 监督。因此,CoCa 在广泛的下游任务上实现了最先进的性能,零样本传输或最小的任务特定适应, 跨越视觉识别(ImageNet,Kinetics-400/600/700,Moments-in-Time )、跨模式检索(MSCOCO、Flickr30K、MSR-VTT)、 多模式理解(VQA、SNLI-VE、NLVR2)和图像字幕(MSCOCO、NoCaps)。在 ImageNet 分类中,CoCa 获得了 86.3% 的 zero-shot top-1 准确率, frozen encoder and finetune classifier 是 90.6%,finetune encoder 可以到 91.0%。

    截止目前国内外已经发布了许多包括 NLP, CV 和 多模态在内的大规模模型,但是这些模型在应用落地上还是有待进一步探究的,目前应用落地较好的有华为 的盘古,在电网和金融圈都有应用;智源的悟道系列在诗词图文上都有广泛应用,可以帮助学生看图写作,根据文字生成插图等;百度的文心也发布了在金融方 面的应用。但截止目前为止大模型在实际中的应用还不是很理想,大模型发展的初衷是使用一个预训练好的大模型代替一堆小作坊似的根据不同任务训练的小模 型,通过模型蒸馏知识迁移等技术在小模型上使用少量数据集达到超过原来小模型性能的目标。CV 大模型在应用上的一个难点是与实际应用相结合,目前社会中 用的较多的视觉相关的深度学习模型主要包括物体检测,人脸识别以及缺陷检测(部分)相比 NLP 模型在实际中的使用少很多,因此将 CV 模型与实际生产相 结合发现更多的应用场景很关键。另外一个 CV 大模型应用的难点就是如何快速高效的使用蒸馏和知识迁移技术提升下游任务的性能,这两点难题的解决在 CV 大模型的实际应用中都刻不容缓。

    总结起来,将大模型应用于更高分辨率的下游视觉任务具有以下好处:提高感知能力、改善定位精度、提升语义理解、改善细节保留和边缘清晰度、增加鲁棒性和泛化能力,以及推动研究进展。这些好处使得大模型在处理高分辨率图像时能够获得更准确、更细致和更真实的结果。随着深度学习和计算资源的不断发展,我们可以期待更先进的大模型和相关技术的出现,进一步推动计算机视觉在高分辨率图像任务中的应用和突破

  • 工业级液晶显示控制芯片RA8889ML3N原理图
    TFT-LCD液晶显示控制芯片RA8889ML3N的优势:
    低功耗及功能强大:这款芯片最大支持分辨率为1366x2048,内置128Mb SDRAM,可为内容显示进行快速刷新,同时内置视频解码单元,支持JPEG/AVI硬解码播放,为普通单片机实现视频播放提供可能。
    支持多种接口:RA8889ML3N支持MCU端的8080/6800 8/16-bit 非同步并列接口和3/4线SPI及IIC串列接口,以及最大驱动1366x800分辨率的TFT LCD。
    显示功能强大:RA8889ML3N提供多段的显示记忆体缓冲区段,支持多图层功能,并提供画中画(PIP)、支持透明度控制与显示旋转镜像等显示功能。
    应用范围广:这款芯片广泛应用于自动化控制设备、电力监测控制、测量检测仪器仪表、电教设备、智能家电、医疗检测设备、车用仪表及工控自动化等领域。
  • 特斯拉电路图.rar
    特斯拉电路图,欢迎大家下载
  • RadarSensors_ARS404-21_cn数据手册​
    RadarSensors_ARS404-21_cn数据手册
  • 浅谈地下污水厂智能照明控制应用

    结合某地下污水厂项目,从结构、系统组成、系统功能、控制要求、场景模式等方面介绍了地下污水厂智能照明控制系统,探索了一套适用于地下污水厂的智能照明控制策略,以确保地下污水厂正常运行的照明需求。

  • [完结19章]SpringBoot开发双11商品服务系统
    今天给大家分享一下关于SpringBoot开发双11商品服务系统的整个流程,我将深度还原大厂实习期技术成长全流程,让你收获大厂项目开发全流程与实战经验,具备应对大流量场景问题的解决能力,全面助力提升实习/转正/跳槽表现力与成功率。


    Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。通过这种方式,Spring Boot致力于在蓬勃发展的快速应用开发领域(rapid application development)成为领导者。

    目的
    让大家更容易使用 spring,更容易集成各种常用的中间件、开源软件。
    SpringBoot 基于 Spring 开发, SpringBoot 本身并不提供 Spring 框架的核心特性以及扩展功能,只是用于快速、敏捷地开发新一代基于 Spring 框架的应用程序。
    SpringBoot 不是用来替代 spring 的解决方案,而是和 spring 框架紧密结合提升 spring 开发者体验的工具。

    准备测试数据
    我们先导入准备好的测试数据,这个测试数据是一份商品数据。

    字段包含商品id,name(商品名)
    last_month_sales(最近一个月的销量)
    favorites(收藏数)这几个字段,我们主要是通过商品名来搜索。
    首先我先先创建一个商品索引
    PUT goods
    {
      "settings": {
        "number_of_shards": 1,
        "number_of_replicas": 0
      },
      "mappings": {
        "properties": {
          "id": {
            "type": "keyword",
            "doc_values": false,
            "norms": false,
            "similarity": "boolean"
          },
          "name": {
            "type": "text"
          },
            "price": {
            "type": "double"
          },
          "last_month_sales": {
            "type": "long"
          },
          "favorites": {
            "type": "long"
          },
          "year":{
            "type": "short"
          }
        }
      }
    }
    千里之行,始于足下。想要舒舒服服地使用Spring框架,就要把它的开发环境配置好,这对它好,也对我好。

    1. jdk 的配置       
    使用 IDEA 进行开发,在 IDEA 中配置 jdk 的方式很简单,打开 File->Project Structure选择 SDKs。
    在 JDK home path 中选择本地 jdk 的安装目录。
    在 Name 中为 jdk 自定义名字通过以上三步骤,即可导入本地安装的 jdk。如果是使用 STS 或者 eclipse 可以通过两步骤添加:
    window->preference->java->Instralled JRES 来添加本地 jdk。
    window-->preference-->java-->Compiler 选择 jre,和 jdk 保持一致。
    PUT test_index/_doc/1
    {
      "string_field":"imooc",
      "int_field": 100,
      "float_field":3.14,
      "bool_field":true,
      "date_field":"2022/03/16",
      "obj_field":{"key1":"value1","key2":100},
      "array_field1":[100,3.14],
      "array_field2":[100,"200"],
      "array_field3":["2022/03/16","100"],
      "array_field4":["100","2022/03/16"],
      "null_field":null
      }
      创建 Spring Boot 项目后需要进行 maven 配置。打开 File->settings,搜索 maven,配置一下本地的 maven 信息。在 Maven home directory 中选择本地 Maven 的安装路径;在 User settings file 中选择本地 Maven 的配置文件所在路径。在配置文件中配置一下国内阿里的镜像,这样在下载 maven 依赖时,速度会变得很快。
    {
      "test_index" : {
        "mappings" : {
          "properties" : {
            "array_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            },
            "bool_field" : {
              "type" : "boolean"
            },
            "date_field" : {
              "type" : "date",
              "format" : "yyyy/MM/dd HH:mm:ss||yyyy/MM/dd||epoch_millis"
            },
            "float_field" : {
              "type" : "float"
            },
            "int_field" : {
              "type" : "long"
            },
            "obj_field" : {
              "properties" : {
                "key1" : {
                  "type" : "text",
                  "fields" : {
                    "keyword" : {
                      "type" : "keyword",
                      "ignore_above" : 256
                    }
                  }
                },
                "key2" : {
                  "type" : "long"
                }
              }
            },
            "string_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            }
          }
        }
      }
    }

    从以上结果中,我们可以看到 Spring Boot 通过MVN方式自动为项目配置了对应的 springframework、logging、jackson 以及 Tomcat 等依赖,而这些正是我们在开发 Web 项目时所需要的。

    那么细心的同学可能会发现一个问题,即在以上 pom.xml 的配置中,引入依赖 spring-boot-starter-web 时,并没有指明其版本(version),但在依赖列表中,我们却看到所有的依赖都具有版本信息,那么这些版本信息是在哪里控制的呢? 
    {
      "_index" : "test_index",
      "_id" : "1",
      "_version" : 1,
      "_seq_no" : 0,
      "_primary_term" : 1,
      "found" : true,
      "_source" : {
        "string_field" : "Chan",
        "int_field" : 100,
        "int_string_field" : "100",
        "float_field" : 3.14,
        "bool_field" : true,
        "date_field" : "2022/03/16",
        "obj_field" : {
          "key1" : "value1",
          "key2" : 100
        },
        "array_field" : [
          "value1",
          "100"
        ],
        "null_field" : null
      }
    }
    spring-boot-starter-parent 是所有 Spring Boot 项目的父级依赖,它被称为 Spring Boot 的版本管理中心,可以对项目内的部分常用依赖进行统一管理。

    <parent>    

            <groupId>org.springframework.boot</groupId>    

            <artifactId>spring-boot-starter-parent</artifactId>    

            <version>2.5.6</version>    

            <relativePath/> 

    </parent>

    Spring Boot 项目可以通过继承 spring-boot-starter-parent 来获得一些缺省的配置内容,它主要提供了以下特性:

    默认 JDK 版本(Java 8)

    默认字符集(UTF-8)

    依赖管理功能

    资源过滤

    默认插件配置识别 

    application.properties 或 application.yml 类型的配置文件
    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":false 
      }
    }
    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":"strict" 
      }
    }


    POST test_index/_doc/2
    {
      "field1":{
       "field2":"imooc ES" 
      }
    }

    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    以下就是本文的全部内容,感谢大家观看
  • 14、小电流贴片共模电感更换需要注意些什么.
    14、小电流贴片共模电感更换需要注意些什么.
  • 风力发电机组机结构与原理-2018年-赵万清
    风力发电机组机结构与原理,中国电力出版社,PDF版本。
  • 听力危机不可不慎,助听器市场的发展概况根据世界卫生组织WHO于2021年所发布的世界听力报告(World report on hearing)统计,全球目前有20%左右的听损人口;其中「轻度」与「中度」听损人口就占了大约15亿人左右。台湾方面,根据2021年卫生福利部统计处的数据显示,台湾则约有12万人有听力损失的问题,其中更有高达56% (约71,543人)确诊为轻度听损。足以看出听力受损问题已逐渐成为全球新兴的健康议题。听力损失的成因及轻重程度因人而异,但无论如何,或多或少都会影响到我们的日
    百佳泰测试实验室 2023-11-30 17:26 174浏览
  • 前言 在网络部署之后和业务开展之前,运营商迫切希望了解当前网络的性能状态,以便为商业规划和业务推广提供必要的基础数据支持。因此,高可靠性和高精确度的性能测试方法对于运营商评判网络性能的优劣,显得尤为重要,而RFC 2544等传统测试标准已不足于鉴定当今的服务等级协议(SLA)。SLA是服务提供商(如ISP)及其最终用户之间的协议,它规定以太网服务的开通或验证必须进行测量,且必须达到SLA的规范要求。目前,对以太网服务进行测试和故障诊断的最佳选择无疑是ITU-T Y.1564标准。 &
    信而泰市场部 2023-11-30 15:06 114浏览
  •    本文介绍在ALPS平台上进行SSL测试的内容和方法   什么是SSL SSL全称是Secure Sockets Layer,指安全套接字协议,为基于TCP的应用层协议提供安全连接;SSL介于TCP/IP协议栈的第四层和第五层之间,广泛用于电子商务、网上银行等。 SSL协议有三个版本,其中SSL2.0和3.0曾被广泛使用,其中SSLv3.0自1996提出并得到大规模应用成为了事实上的标准,在2015年才被弃用。1999年,IETF收纳了SSLv3.0并
    信而泰市场部 2023-11-30 15:08 150浏览
  • By Toradex胡珊逢 简介 双屏显示在显示设备中有着广泛的应用,可以面向不同群体展示特定内容。文章接下来将使用 Verdin iMX8M Plus 的 Arm 计算机模块演示如何方便地在 Toradex 的 Linux BSP 上实现在两个屏幕上显示独立的 Qt 应用。 硬件介绍 软件配置 Verdin iMX8M Plus 模块使用 Toradex Multimedia Reference Image V6.4.0 版本,其包含 Qt5.15 相关运行环境。默认系统中已经使
    hai.qin_651820742 2023-12-01 11:53 199浏览
  • 印刷部分 这本书印刷和普通书籍不太一样,类似笔记本的手写体印刷和笔记的网格,有亲近感和新鲜感内容部分 分为通信工程 ;传感器工程;磁传感器工程;太阳电池功能几大部分通信电路是一种用于传输信息的电子电路,可以用于无线通信、有线通信和网络通信等各种通信系统中。传感器电路则是用于感知和测量环境参数的电路,可以探测光、温度、压力、湿度、运动等各种物理量。在学习通信电路方面,可能会接触到模拟通信电路和数字通信电路。模拟通信电路主要涉及模拟信号的传输和处理,如调制解调、信号放大、滤波等。数字通信电路则涉及数
    陇南有只大花猫 2023-11-30 19:01 286浏览
  •    电源连接器的插针遭受损坏的情况非常普遍,这种故障会让连接器的电流传输受到影响,进而影响设备的正常使用,那是什么因素导致电源连接器的插针遭到损坏呢?下面Amass将为您分析其中的原因。   1、应用环境高温 1. 在高温环境下,电源连接器插针易受腐蚀影响,形成氧化层,损失接触压力,甚至可能发生接头烧损情况。对于这种环境,电源连接器需要具备耐高温性能,不仅需满足环境温度要求,还须考虑其在工作状态下的热量散发。  
    艾迈斯电子 2023-11-30 16:33 179浏览
  •        2023年,全球服务器市场开始走低,出货数据双位数的下滑,给整个产业链带来巨大冲击(具体数据如表格)。     中国区服务器市场的IDC数据暂时没有获取,但是可以提供两个新闻供大家参考:  1.新浪财经11/08新闻 浪潮信息前三季业绩双降股价跌52% 应收账款149亿占营收28%存货增四成|浪潮信息_新浪财经_新浪网 (sina.com.cn)(作者:长江商报)   日前
    天涯书生 2023-12-02 13:43 69浏览
  • 作者:Shawn Prestridge,IAR资深现场应用工程师 / 美国FAE团队负责人 安全一直都是一个非常热门的话题,似乎每周都会听到这样的消息:某某公司如何被入侵,数百万用户的数据被泄露。 我们看到这么多的安全问题,部分原因在于我们对待安全的方式:安全性通常被认为是事后考虑的问题,是在开发结束时才添加到设备上的东西。然而,复杂的系统,尤其是嵌入式系统,有一个很大的攻击面,这让攻击者有机可乘,能够在“盔甲”上找到破绽。如果你去研究大部分黑客试图入侵系统的方式,你很快就会发现,在他们的武
    电子科技圈 2023-11-30 14:43 170浏览
  • 高低温探针台是一种用于材料科学、物理、化学等领域的实验设备,主要用于在高温和低温环境下对材料进行各种实验和研究。下面是高低温探针台的工作原理。工作原理是将样品放置在加热和冷却组件上,然后使用各种测量仪器对其进行实验和测量。具体来说,其工作流程如下:将样品放置在加热和冷却组件上;启动加热系统,将样品加热到所需的温度;启动制冷系统,将冷却组件降温到所需的温度;通过各种测量仪器对样品进行实验和测量;记录实验数据并进行分析和处理;结束实验后,关闭加热和制冷系统,并解除真空状态,取出样品。总之,高低温探针
    锦正茂科技 2023-12-01 14:50 190浏览
  • 随着汽车电子进入电动化+智能网联的时代,新能源、车联网、智能化、电动化四个领域带来了CAN数据的需求,企业车队管理需要数据,汽车运营需要数据,改装、解码、匹配工具打造需要数据,现在就连简单的LED汽车照明控制,也需要匹配数据。这一切,逃脱不了CAN、LIN、SENT、BSD、MOST各种协议下,不同ECU控制单元在不同年份,不同款式下的数据,可以这么说,在新能源这个前提下,我们要做的工作和要做的事情可能要更为复杂、多变。 前日,我拿出一份13年左右丰田的CAN协议,里边包括车灯控制、车
    lauguo2013 2023-11-30 15:45 159浏览
  • 在电力系统中,过电压保护器是一种重要的设备,它对电力设备的安全运行具有重要的作用。下面我们来了解一下过电压保护器的基本结构。过电压保护器通常由三个主要部分组成:间隙、非线性元件和触发器。1. 间隙:间隙是过电压保护器的基本结构之一,它是由两个金属电极组成的,通常采用球形或棒形结构。间隙的间距通常在几毫米到几厘米之间,它能够承受一定的电压,并在过电压条件下进行放电。2. 非线性元件:非线性元件是过电压保护器的另一个重要组成部分。它是一种特殊的电阻器,能够在高电压下呈现出非线性的特性。当电压超过一定
    保定众邦电气 2023-11-30 14:49 209浏览
  •     按照 IPC术语,连接盘/Land 是指一块导体,通常用于连接和/或固定元器件的导电部分。    为了增强孔的机械强度,所有的金属化孔或者镀覆孔,在穿过每一层铜箔时,都应该有连接盘,连接盘的形状不限。前面提过的孔环也是连接盘的一种形式。在允许的条件下,孔环和连接盘的尺寸都要尽量大一些。    前面提到过,铜层图案(连接盘)和孔是在不同的工序制作的。由于加工公差的存在,用常见的圆形连接盘和圆孔来说,并不能保证孔和连接盘保持精确的同
    电子知识打边炉 2023-11-30 21:32 227浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦