铝箔和铜箔分别是阴极和阳极的集流体使用最广泛的材料。在与阴极充电条件相关的高氧化电位下,铝集电体中发生局部坑状腐蚀[35]。凹坑和腐蚀部位充满金属氧化物产物的混合物,形成结节和表面土丘。铝集流体的性能在很大程度上取决于电解质的组成。由于表面存在氧化铝(Al2O3)和氢氧化铝(Al(OH)3)组成的保护层,金属铝在包含少量氧化剂的有机电解质溶液中通常是稳定的。在LiPF6电解质中,少量的水可以促进电解质的分解并产生稳定的无机盐,从而抑制铝集电体的腐蚀。然而,随着水的产生,电解质的氧化分解产物在铝箔表面发生电化学反应,加速了铝箔的腐蚀。含氟表面面膜的形成对防止有机电解质溶液引起的铝阳极腐蚀具有重要作用。诸如过放电等极端条件导致铜集流体的电势上升到铜开始氧化为铜离子并溶解在电解质中。在随后的充电过程中,溶解的铜离子沉淀成金属铜并沉积在阳极表面上,导致阳极的锂吸收能力降低和锂电镀的发生。电解液腐蚀导致的锂电镀直接导致容量损失,甚至导致灾难性故障,如内部短路导致的热失控。与铝表面不同,由于阴极保护,铜通常不易在阴极电位下发生局部点蚀。 参考文献[1] BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells [J]. Journal of Power Sources, 2017, 341: 373-86.[2] AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J]. Solid State Ionics, 2002, 148(3-4): 405-16.[3] KABIR M M, DEMIROCAK D E. Degradation mechanisms in Li-ion batteries: a state-of-the-art review [J]. International Journal of Energy Research, 2017, 41(14): 1963-86.[4] HAN X, LU L, ZHENG Y, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle [J]. eTransportation, 2019, 1.[5] BUQA H, WURSIG A, VETTER J, et al. SEI film formation on highly crystalline graphitic materials in lithium-ion batteries [J]. Journal of Power Sources, 2006, 153(2): 385-90.[6] ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries [J]. Journal of the Electrochemical Society, 1998, 145(10): 3647-67.[7] BASHASH S, MOURA S J, FORMAN J C, et al. Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity [J]. Journal of Power Sources, 2011, 196(1): 541-9.[8] KOLTYPIN M, AURBACH D, NAZAR L, et al. More on the performance of LiFePO4 electrodes - The effect of synthesis route, solution composition, aging, and temperature [J]. Journal of Power Sources, 2007, 174(2): 1241-50.[9] VETTER J, NOVAK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries [J]. Journal of Power Sources, 2005, 147(1-2): 269-81.[10] STEIGER J, RICHTER G, WENK M, et al. Comparison of the growth of lithium filaments and dendrites under different conditions [J]. Electrochem Commun, 2015, 50: 11-4.[11] LI Z, HUANG J, LIAW B Y, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries [J]. Journal of Power Sources, 2014, 254: 168-82.[12] ORSINI F, DU PASQUIER A, BEAUDOUIN B, et al. In situ SEM study of the interfaces in plastic lithium cells [J]. Journal of Power Sources, 1999, 81: 918-21.[13] STEIGER J, KRAMER D, MONIG R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium [J]. Journal of Power Sources, 2014, 261: 112-9.[14] STEIGER J, KRAMER D, MOENIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution [J]. Electrochim Acta, 2014, 136: 529-36.[15] KLEINER K, EHRENBERG H. Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems [J]. Top Curr Chem (Cham), 2017, 375(3): 54.[16] YAMAKI J, TOBISHIMA S. Rechargeable Lithium Anodes [J]. Handbook of Battery Materials, 2nd Edition, 2011: 377-404.[17] GARCIA R E, CHIANG Y M, CARTER W C, et al. Microstructural modeling and design of rechargeable lithium-ion batteries [J]. Journal of the Electrochemical Society, 2005, 152(1): A255-A63.[18] ZAGHIB K, MAUGER A, GROULT H, et al. Advanced Electrodes for High Power Li-ion Batteries [J]. Materials (Basel), 2013, 6(3): 1028-49.[19] ZHAO K J, PHARR M, VLASSAK J J, et al. Fracture of electrodes in lithium-ion batteries caused by fast charging [J]. J Appl Phys, 2010, 108(7).[20] LEISING R A, PALAZZO M J, TAKEUCHI E S, et al. Abuse testing of lithium-ion batteries - Characterization of the overcharge reaction of LiCoO2/graphite cells [J]. Journal of the Electrochemical Society, 2001, 148(8): A838-A44.[21] NAGPURE S C, BHUSHAN B, BABU S S. Multi-Scale Characterization Studies of Aged Li-Ion Large Format Cells for Improved Performance: An Overview [J]. Journal of the Electrochemical Society, 2013, 160(11): A2111-A54.[22] WOHLFAHRT-MEHRENS M, VOGLER C, GARCHE J. Aging mechanisms of lithium cathode materials [J]. Journal of Power Sources, 2004, 127(1-2): 58-64.[23] CHUNG K Y, KIM K B. Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes [J]. Electrochim Acta, 2004, 49(20): 3327-37.[24] AMINE K, LIU J, BELHAROUAK I, et al. Advanced cathode materials for high-power applications [J]. Journal of Power Sources, 2005, 146(1-2): 111-5.[25] YAN P, ZHENG J, ZHANG J G, et al. Atomic Resolution Structural and Chemical Imaging Revealing the Sequential Migration of Ni, Co, and Mn upon the Battery Cycling of Layered Cathode [J]. Nano Lett, 2017, 17(6): 3946-51.[26] WANG F, LIN Y X, SUO L M, et al. Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive [J]. Energy & Environmental Science, 2016, 9(12): 3666-73.[27] ZHANG Z, WANG X, BAI Y, et al. Charactering and optimizing cathode electrolytes interface for advanced rechargeable batteries: Promises and challenges [J]. Green Energy & Environment, 2022, 7(4): 606-35.[28] ZHANG J D, KABIR K M M, LEE H E, et al. Chiral recognition of amino acid enantiomers using high-definition differential ion mobility mass spectrometry [J]. Int J Mass Spectrom, 2018, 428: 1-7.[29] FANG S Y, JACKSON D, DREIBELBIS M L, et al. Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer (vol 373, pg 184, 2018) [J]. Journal of Power Sources, 2019, 421: 32-.[30] SLOOP S E, KERR J B, KINOSHITA K. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge [J]. Journal of Power Sources, 2003, 119: 330-7.[31] KOSTECKI R, NORIN L, SONG X Y, et al. Diagnostic studies of polyolefin separators in high-power Li-ion cells [J]. Journal of the Electrochemical Society, 2004, 151(4): A522-A6.[32] LOVE C T. Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators [J]. Journal of Power Sources, 2011, 196(5): 2905-12.[33] NORIN L, KOSTECKI R, MCLARNON F. Study of membrane degradation in high-power lithium-ion cells [J]. Electrochem Solid St, 2002, 5(4): A67-A9.[34] ARORA P, ZHANG Z M. Battery separators [J]. Chem Rev, 2004, 104(10): 4419-62.[35] GABRYELCZYK A, IVANOV S, BUND A, et al. Corrosion of aluminium current collector in lithium-ion batteries: A review [J]. Journal of Energy Storage, 2021, 43.来源:电源系统锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com。 相关阅读:锂离子电池制备材料/压力测试!锂电池自放电测量方法:静态与动态测量法! 软包电池关键工艺问题!一文搞懂锂离子电池K值!工艺,研发,机理和专利!软包电池方向重磅汇总资料分享! 揭秘宁德时代CATL超级工厂! 搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!锂离子电池生产中各种问题汇编! 锂电池循环寿命研究汇总(附60份精品资料免费下载)