苹果派与功率转换器效率

Qorvo半导体 2023-03-29 09:50

您是否希望提高功率转换器设计的效率?或许,您可以考虑使用 SiC FET。了解 SiC FET 如何成为提高所有常见转换拓扑结构效率的安全方法,以及所有随之而来的好处。


这篇博客文章最初由 United Silicon Carbide (UnitedSiC) 发布,该公司于 2021 年 10 月加入Qorvo 大家庭。UnitedSiC 是一家领先的碳化硅 (SiC) 功率半导体制造商,它的加入促使 Qorvo 将业务扩展到电动汽车 (EV)、工业电源、电路保护、可再生能源和数据中心电源等快速增长的市场。




在撰写博文时,很多人喜欢用 “母亲和苹果派”(美国俚语,表示大家都认同的说法)这样的内容作为开头,例如提高功率转换效率会带来种种好处,诸如此类。当然,更高的效率无疑是一种优势,但有时 “净增益” 的描述会有失妥当:相比于效率低下的锅炉,家用电器产生少量热量便可使中央供暖系统在寒冷条件下轻松运行,也许还可以提升能源使用的整体效率,降低其整体成本。白炽灯亦是如此,当您需要取暖时,白炽灯随时能成为非常有效的加热器。


其他用户也确实看到了一个主要优势:在温暖的地方,空调系统所产生的热量会增加其功耗,从而导致成本成倍攀升。但在工业领域,比如说服务器机群,其能源需求如今超过了全球能源需求的 1%,所以其效率每提高一个小零头,都代表着可以节省大量成本并大幅降低环境影响。有时候,效率提升会达到一个 “临界点”,此后的优势将会成倍飙升。就拿电动汽车来说,若能在其改进过程中创造出更小巧、更轻便的功率转换器,那必能降低能源需求、延长行驶里程。


因此,哪怕只能提高一个小数,众多工程师仍会不遗余力地提升效率。在使用不熟悉但具有部分改进的新型拓扑结构进行设计时,他们会评估该设计是否会在某个时间范围内产生较低的总拥有成本。毋庸置疑,随着效率的不断提高,任何改进都会变得更加困难,当效率已经达到 99.5% 左右时,仅 ±0.1% 的输入和输出功率测量误差都可能导致计算损耗比实际值高或低 40%。当电源输入为存在失真且功率因数欠佳的交流电源,直流电源输出有残留噪声分量,给 DVM 造成混淆时,情况会变得更糟。现在,我们经常使用量热法来测量热量输出,而不是通过电气测量来推断热量输出。



图 1. 在效率水平较高的情况下,即使测试设备的精确度仅为 ±0.1%,也会导致效率测量精确度产生较大波动


通过仅改进设计好的半导体来提高功率转换器效率是一种风险相对较低的办法。我们可以适当考虑 EMI 辐射的变化,将基于 MOSFET 的转换器升级为具有较低导通电阻和可能更低开关能量要求的较新器件。但是,要想利用较新的宽带隙器件(如 SiC MOSFET 或 GaN HEMT 单元),就必须对电路(尤其是栅极驱动)进行较大的改变。如果现有电路是基于 IGBT 而搭建,则需要考虑彻底地进行重新设计,以便使用宽带隙器件。


栅极驱动问题与电压电平有关。所以,要实现全面提升,SiC MOSFET 需要使用电压电平明显高于 Si-MOSFET 的导通驱动,这个电压电平应非常接近器件的绝对最大额定值,且应进行严格限制。导通和关断状态之间存在的较大电压波动也意味着需要一定的驱动功率,因为每个导通和断开周期都会对栅极电容进行充放电。此外,电压阈值也不是固定值,且存在迟滞,因此实现最佳驱动比较困难。在某种程度上,GaN HEMT 单元则与前述情况相反,其栅极阈值电压和绝对最大值都非常低,不过也必须要严格控制其驱动电路,以免出现过应力和故障。


如果功率转换器电路需要实现反向或第三象限传导,则 SiC MOSFET 中的体二极管性能至关重要,否则可能会由于其较高的回收能量和正向电压降而导致过度损耗。GaN 器件中没有体二极管,通过信道进行反向传导,但在信道通过栅极驱动实现主动增强之前,会在死区时间出现较高的压降。如果栅极在关断状态下为负栅极,则 “换向” 期间的电压降会更高。


使用多个 SiC FET(即 Si-MOSFET 和 SiC JFET 的共源共栅组合)是更有益的解决方案。此类器件采用了 Si-MOSFET 的简单、非临界栅极驱动,但其性能品质因数 “导通电阻 x 面积” 以及 “导通电阻 x EOSS” 优于 SiC MOSFET 和 GaN HEMT 单元的相关品质因数。此外,此类器件本身具有出色的雪崩耐量和自限短路电流性能,且其体二极管效应与具有较低正向压降和快速恢复性能的低压 Si-MOSFET 类似。换句话说,通常只需将 SiC FET 插入 Si-MOSFET 或 IGBT 插槽中,即可实现效率提升。与其他技术不同,我们无法只通过调整栅极驱动电阻来控制 SiC FET 的速度,以限制 EMI 和应力,但使用这些超快器件,我们可以通过小型 RC 缓冲电路来有效地限制过冲和振铃。此外,该电路还可用于简化器件的并联操作。用此类器件取代 IGBT,可以提高开关频率且不会带来过大的动态损耗,从而实现更小巧轻便、成本更低的磁性元件。


SiC FET 是提高所有常见转换拓扑结构效率的安全方法,同时还能带来众多优势。有人说,怕烫的话,不烤苹果派(美国的一种美食,此处表示一种所有人都无法拒绝的美好事物)不就行了。这显然不行,不过在转换器设计中,您却可以改用 SiC FET。


多个 SiC FET

https://unitedsic.com/group/sic-fets/

Qorvo半导体 射频领域技术分析与分享, 半导体行业信息交流
评论 (0)
  • 实用电源电路集锦-开关电源、直流稳压电源、交流稳压电源等

    一、直流稳压电源

    二、可调直流稳压电源

    三、开关电源

    四、交流稳压电源

    五、变换电源

    六、逆变电源

    七、充电电源

    八、应急电源

  • 中低压配电实用技术.pdf
    中低压配电实用技术.pdf
  • CS5290兼容CS5230防破音AB/D切换,5.2W单声道GF类音频功放IC
    CS5290兼容CS5230防破音AB/D切换,5.2W单声道GF类音频功放IC
  • 同步整流技术
    同步整流最小系统的详细介绍及应用详情
  • 中低压配电网实用技术指导书.pdf
    中低压配电网实用技术指导书.pdf

  • 基于ESP32-CAM的人工智能机器人设计资料
    基于ESP32-CAM的人工智能机器人设计资料
  • 基于python人工智能算法的五官识别设计资料
    基于python人工智能算法的五官识别设计资料
  • 从0写自己的Linux x86操作系统
    分享一套操作系统课程——从0写自己的Linux x86操作系统,附源码+课件+开发工具+参考资料+磁盘映像下载。

    适用人群
    对操作系统内部工作机制感兴趣,想要设计操作系统的大学生、软件开发人员

    课程采用从0行代码编写的方式,教你如何写一个类似于Linux 0.11的x86操作系统,从而深入掌握操作系统的工作原理。

    课程大纲
    第一阶段:引导程序设计
        设计boot程序,接管计算机运行权
        设计loader程序,加载并解析操作系统内核
    第二阶段:多进程管理
        增加中断处理模块,可处理硬件中断和异常
        利用多任务机制,实现系统中多进程的运行
        实现信号量与锁,允许进程之间同步和互斥
    第三阶段:虚拟内存管理
        为系统增加页表,实现进程加载到虚拟地址
        利用分页机制,让进程之间相互隔离,运行互不影响
    第四阶段:tty与文件系统
        增加文件系统模块,可从磁盘上加载程序并执行
        支持标准输入输出文件,允许应用使用printf输出
    第五阶段:命令行shell实现
        实现命令行接口,解析命令行参数并执行
        创建自己的应用程序,并在shell中动态加载并执行
  • 移动端架构师体系课(30周完整版+源码+电子书)
    今天给大家分享一套移动端架构师视频教程,《移动端架构师》一共分为6大阶段,30周,500多课时!提供配套的源码+电子课件(独家)下载!

    课程大纲:
    【0】源码+电子书
    【阶段1:Kotlin x Java打造 UI 通用组件】第1周、走进移动端架构师
    【阶段1:Kotlin x Java打造 UI 通用组件】第2周、通用UI组件开发与基础框架设计
    【阶段1:Kotlin x Java打造 UI 通用组件】第3周、高级UI组件定制与解耦设计
    【阶段1:Kotlin x Java打造 UI 通用组件】第4周、Android必备Kotlin核心技术
    【阶段1:Kotlin x Java打造 UI 通用组件】第5周、Android UI核心组件剖析与实战
    【阶段1:Kotlin x Java打造 UI 通用组件】第6周、Android 导航架构探秘
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第7周、线程与线程池核心技术
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第8周、Android网络编程进阶
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第9周、架构首页模块
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第9周+、架构首页分类模块
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第10周、解密Jetpack工具库核心组件
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第11周、架构商品详情模块
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第12周、Android消息机制与类加载
    【阶段3:主流架构演进与项目架构改造】第13周、玩转Kotlin x Java 设计模式
    【阶段3:主流架构演进与项目架构改造】第14周、主流架构模式演进之路
    【阶段3:主流架构演进与项目架构改造】第15周、主流架构实战搜索模块
    【阶段3:主流架构演进与项目架构改造】第16周、IOC架构设计
    【阶段3:主流架构演进与项目架构改造】第17周、构建与打包能力
    【阶段4:混合架构设计与开发】第18周、走进Flutter开发
    【阶段4:混合架构设计与开发】第19周、Flutter混合架构原理剖析与应用
    【阶段4:混合架构设计与开发】第20周、Flutter实战应用与性能优化
    【阶段4:混合架构设计与开发】第21周、走进RN开发
    【阶段4:混合架构设计与开发】第22周、RN混合架构原理剖析与应用
    【阶段5:稳定性及性能调优】第23周、稳定性优化
    【阶段5:稳定性及性能调优】第24周、性能优化
    【阶段5:稳定性及性能调优】第25周、开发技能拓展
    【阶段6:前后端接口设计与配置中心系统】第26周、后端-DAU超千万的移动端接口设计实现
    【阶段6:前后端接口设计与配置中心系统】第27周、前端-管理后台设计实现
    【阶段6:前后端接口设计与配置中心系统】第28周、【SDK+服务端+控台】配置中心架构实现
    【阶段6:前后端接口设计与配置中心系统】第29周、HiAbility SDK开发
    【阶段6:前后端接口设计与配置中心系统】第30周、学成“下山”



    移动开发“两极分化”,没有差不多的“中间层”,唯有尽早成长为架构师,你的职业道路才能走的更远更稳!

    架构师两大核心能力:
    1、从0到100构建千万级APP的技术能力
    小型APP逐渐被小程序替代
    移动开发的重心转向
    大型APP开发

    2、驾驭大厂APP架构设计与落地能力
    行业趋于成熟,企业用人倾向于
    具备架构思维与架构设计能力的
    复合型人才


    经历千万级项目全流程,对一个工程师的成长弥足珍贵,但现实中这样的机会凤毛麟角,于是有了咱们这套《移动端架构师》课程

    掌握千万日活APP的架构能力
    · 定制移动端优质解决方案
    · 基础库&框架&模块的技术选型
    · 基础模块&组件设计开发维护

    “技术+管理” 综合发展
    解决项目中关键问题&技术难题
    · 持续优化团队开发流程
    · 提高团队开发能力&效率


    掌握大部分高阶人才必备技术栈
    底层&框架源码深度剖析
    · 多设备多版本兼容适配
    · 主流混合开发框架实践应用
  • 14、谷景科普0510色环电感超声波震荡后出现不良的常见原因分析
    14、谷景科普0510色环电感超声波震荡后出现不良的常见原因分析
  • 《精通机器学习:MATLAB 分步实施指南》
    《精通机器学习:MATLAB 分步实施指南》
  • 面向多功能嵌入式客户端系统的高端平台
    面向多功能嵌入式客户端系统的高端平台 白皮书
  • CS5366应用TypeC转HDMI4k60HZ+USB3.0扩展芯片电路图

    CS5366芯片应用电路图,CS5366设计原理图,应用TypeC转HDMI4k60HZ+USB3.0扩展芯片电路,CS5366集成DSC1.2a decoder, 不仅支持2 lane 8.1G的source,  也支持2 lane 5.4G输出4K60 video方案芯片

  • 信道编码;Turbo码;LDPC码
    介绍了宽带移动通信系统中先进的信道编码技术的软硬件实现,即Turbo码和LDPC码的FPGA实现。书中首先详细介绍了FPGA设计的基础知识,然后讲解信道编码技术中的码的构造、编译码算法和信道编码技术实现相关的软硬件知识
  • 前言 2022年,全球半导体产业连续高增长,进入调整周期。与此形成对比,在新能源汽车、光伏、储能等需求带动下,第三代半导体产业保持高速发展,全球化供应链体系正在形成,竞争格局逐步确立,产业步入快速成长期。而国内第三代半导体产业经过前期产能部署和产线建设,国产第三代半导体产品相继开发成功并通过验证,技术稳步提升,产能不断释放,国产碳化硅(SiC)器件及模块开始“上机”,生态体系逐渐完善,自主可控能力不断增强,整体竞争实力日益提升。 01 产能释放,第三代半导体产业即将进入”战国
    普赛斯仪表 2023-05-29 17:31 165浏览
  • 射频(RF)电路板设计虽然在理论上还有很多不确定性,但RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理,本文将集中探讨与RF电路板分区设计有关的各种问题。1、微过孔的种类电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰的最佳情况下连接,这就需要用到微过孔(microvia)。通常微过孔直径为0.05mm~0.20mm,这些过孔一般分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(th
    攻城狮华哥 2023-05-30 11:27 206浏览
  • By Toradex秦海1). 简介嵌入式 Linux  由于运行平台通常资源受限同时对稳定性要求高,因此需要比较精简,那么针对 SSH 服务器/客户端应用,通常也不使用庞大的 OpenSSH,而是采用十分精简的 Dropbear SSH工具。Dropbear 是一个基于 MIT License 的开源软件,其一些基本信息可以参考如下软件发布页面:https://matt.ucc.asn.au/dropbear/dropbear.html 本文所演示的平台来自于Toradex
    hai.qin_651820742 2023-05-31 15:16 113浏览
  • 当谈及现代科技中的传感器射频/微波技术时,陶瓷线路板是不可或缺的重要组成部分。作为这一领域的创新引领者,陶瓷线路板以其卓越的性能和独特的特点,推动着传感器射频/微波技术的革新。本文将为您揭示陶瓷线路板在该领域的重要性,并通过数据展示其卓越的优势。 陶瓷线路板以其材料特性和制造工艺成为传感器射频/微波应用的理想选择。 一、首先,陶瓷材料具有优异的机械强度和耐高温性能,能够承受高功率和极端环境条件下的工作。根据数据显示,陶瓷线路板的机械强度远超过传统的有机基板,可以承受更高的压力和振动,从而
    斯利通陶瓷电路板 2023-05-29 16:58 246浏览
  • 今日(5月29日),广东省人民政府网站发布,中共广东省委、广东省人民政府关于新时代广东高质量发展的若干意见(以下简称意见)。意见指出,要坚持制造业当家,强化高质量发展的产业根基。《意见》指出,到2027年,全省高质量发展实现新进步,自主创新能力明显提高。到2035年,高质量发展实现更大成效,科技创新能力大幅跃升,城乡区域发展更加协调更加平衡。意见称,广东建设现代化产业集群。着力发展先进制造业,打造梯次型产业格局,争创国家先进制造业集群。推动20个战略性产业集群发展,重点加快发展集成电路、新能源汽
    传感器专家网 2023-05-29 19:54 138浏览
  • 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。阻抗匹配是微波电子学的一部分,也是射频电路中非常重要的一部分,主要用于传输线路中,以达到能够将所有高频微波信号传输到负载点的目的。回溯到原点,提高能源效率。阻抗,顾名思义就是对电路中电流起到阻碍作用的元器件。我们在射频电路中,又引入了特征阻抗和等效阻抗两个概念。特征阻抗是射频传输线的一个固有特性,其物理意义是在射频传输线上入射波电压与入射波电流的比值,或者反射波电压和反射波电流的比值。等效阻抗也是传输线理论的一个概念,
    cxtf004 2023-05-30 14:58 189浏览
  •  近日,财政部会计司发布了《关于公布电子凭证会计数据标准(试行版)的通知》,为做好电子凭证会计数据标准深化试点工作,研究制定了9类电子凭证的会计数据标准。在通知的《电子凭证会计数据标准——全面数字化的电子发票(试行版)》指南中,明确了数电票报销入账归档的具体处理方式。    指南明确: 接收方取得数电票报销入账归档的,应按照《财政部 国家档案局关于规范电子会计凭证报销入账归档的通知》(财会〔2020〕6号,以下称《通知》)和《会计档案管
    科技财经汇 2023-05-29 20:47 195浏览
  • 近日,经纬恒润AUTOSAR基础软件产品INTEWORK-EAS-CP成功适配智芯半导体的Z20K14x产品家族。同时,经纬恒润完成了对智芯半导体Z20K14X 产品MCAL软件适配和工程集成,为智芯半导体提供了全套AUTOSAR解决方案。  左图:经纬恒润AUTOSAR EAS CP软件工程配置页面  右图:智芯半导体Z20K14x产品板   通过本次合作,智芯半导体的芯片产品将以功能更加完善、性能更加量化、服务更加完整的状态面向车
    hirain 2023-05-30 11:12 243浏览
  • 网约车行业竞争越来越卷,自动驾驶成为网约车平台重要的发力点,滴滴、T3出行、曹操出行等网约车平台相继对外宣布自动驾驶的计划并提出了“小目标”。滴滴发布两款自动驾驶核心硬件——“北曜Beta”激光雷达和三域融合计算平台“Orca虎鲸”,并宣布首款自动驾驶量产车型计划于2025年接入滴滴共享出行网络。T3出行联手轻舟智航在苏州启动Robtaxi的公开运营,并计划到2026年末,L4自动驾驶车辆商业运营达1000辆。曹操出行与吉利汽车达成战略合作,计划围绕出行平台构建集车内空间开发、定制车、智能驾驶、
    刘旷 2023-05-30 10:51 229浏览
  • 一、二极管基础 1、   基础知识 2、   各项参数: (1)    结电容       结电容有两种,分别是势垒电容和扩散电容。        势垒电容:PN结两端电压变化,引起积累在中间区域的电荷数量的改变,从而呈现电容效应,这个电容就是势垒电容。 扩散电容:当有外加正向偏压时,在PN结两侧的少子扩散
    HGno1 2023-05-29 22:55 177浏览
  • MEMS芯片和ASIC芯片是一个MEMS传感器中技术和价值含量最高的部分。你知道MEMS芯片是怎么被制造出来的吗?MEMS芯片与集成电路芯片有什么区别?此外,谈到MEMS传感器,我们还常说ASIC芯片,ASIC芯片是什么?对MEMS传感器有什么作用?MEMS传感器的ASIC芯片相比其他ASIC芯片有什么特别?MEMS传感器的主要构造?MEMS芯片与集成电路芯片有什么区别?MEMS是Micro-Electro-MechanicalSystem的缩写,中文名称是微机电系统,是将微电子电路技术与微机械
    传感器专家网 2023-05-29 20:00 137浏览
  • 在电脑内存条、显卡上,有一排金黄色导电触片,就是大家俗称的“金手指”。在PCB设计制作行业中的“金手指”(Gold Finger,或称Edge Connector),是由connector连接器作为PCB板对外连接网络的出口。关于“金手指”你知道多少呢?小编已做足了功课,今天就带大家全面了解PCB中“金手指”的设计,以及一些可制造性细节的处理等知识。“金手指”的功能用途1、“金手指”互连点当辅助PCB(如显卡、内存条)连接到主板时,会通过几个母槽中的其中一个插槽,如PCI、ISA或AGP槽,在外
    攻城狮华哥 2023-05-31 11:46 117浏览
  • [2] 电容器与电容 (1)什么是电容器? 电容器是用于储存电荷的器件,其中包含一对或多对由绝缘体分隔的导体。容器通常由铝、钽或陶瓷等材料制成。各种材料的电容器在系统中使用时具有各自的优缺点,如表 1 所示。陶瓷电容器通常是理想的选择,因为其电容变化最小,而且成本较低。                 (2)  直流电压降额        
    HGno1 2023-05-29 23:42 183浏览
  • [1] 压降 (1)什么是压降? 压降电压 VDO 是指为实现正常稳压,输入电压 VIN 必须高出所需输出电压 VOUT(nom) 的最小压差。 (2)决定压降的因素是什么?                           
    HGno1 2023-05-29 23:34 177浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦