汽车芯片技术趋势分析:未来5年,单芯片算力突破20000TOPS

谈思实验室 2023-04-02 18:00

点击上方蓝字谈思实验室

获取更多汽车网络安全资讯


汽车大算力平台软硬件的发展趋势,可以简单的总结为:在数据中心已经成熟多年的技术,在逐步的下沉到自动驾驶汽车终端。


1 自动驾驶汽车芯片演进简介

上图是BOSCH给出的汽车电气架构演进示意图。从模块级的ECU到集中相关功能的域控制器,再到完全集中的车载计算机。

从系统架构角度分析,汽车的电气架构经过了三个发展阶段:

  • 第一阶段,完全分布式架构。ECU是单个功能一个芯片,采用的芯片是传统MCU级别的芯片,一个MCU芯片负责一个具体的功能。一辆汽车需要数百颗ECU,芯片数量众多,芯片间的连接总线复杂。并且,由于不同的ECU可能来自不同的公司,这样的架构,各个ECU相互掣肘,优化和升级都很困难。

  • 第二阶段,按域集中的架构。每个域控制器DCU是多个功能相近的ECU的集合,一个DCU相当于一个SOC。

  • 第三阶段,终局思维,完全集中架构实现的超级终端芯片。完全集中的超级终端芯片系统,是多个单系统的集合,属于复杂的宏系统。也因此,集中的超级芯片可以看作是多个SOC的集合,Multi-SOC或Macro-SOC。

2 综合趋势:数据中心技术栈下沉到车端

汽车从机械化到电气化,再到智能化、网联化,如今的汽车越来越像一台电脑,更准确的说,是一个超级计算机。

“超级”体现在:自动驾驶汽车系统是一个非常复杂的系统,因此会把这个复杂系统按照不同的功能域划分为一个个简单小系统;相关的软硬件也需要划分成多个小系统的逻辑软硬件。反过来说,自动驾驶汽车是多个域控小系统融合的复杂大系统。

云计算是最典型的复杂系统计算场景,也因此,我们可以清晰的看到这个显著的趋势,就是已经在云计算数据中心成熟的技术,在逐步的下沉到汽车终端。

这些技术主要包括:

  • 虚拟化。虚拟化是云计算的核心,也即将是汽车超级终端的核心。通过虚拟化技术,把物理的硬件灵活地虚拟成逻辑的多个不同规格的“硬件”供软件使用。

  • 弹性。通过虚拟化、资源池化等技术,可以实现对各种资源的细粒度切分以及灵活的重组,以此来实现灵活的资源供给,高效地支撑更加灵活多变的应用需求。

  • 迁移。迁移实现VM或容器在不同的硬件平台自由“流动”。迁移是实现系统高可用的基础,是资源宏观调度的基础,也是实现车规级芯片系统可靠性和稳定性的基础,还是实现云网边端融合的基础。

  • 高可用。完全分布式的ECU阶段,车轨芯片关注的是器件的可靠性和功能的稳定性。随着汽车芯片越来越计算机化,可以通过一些更高层的技术实现软件服务的高可用,这样就可以降低对器件可靠性和基础功能稳定性的要求。

  • 服务化。我们把资源、功能服务化,这样能够实现解耦,并且不需要关注底层的技术细节和运行维护等繁杂的工作。云计算通常分为IaaS、PaaS、SaaS三层,云计算本质上是由众多服务组成的一套服务体系。自动驾驶汽车软件栈核心思想是SOA,也即通过服务化来构建整个软件体系。

当然,如果仅仅只是数据中心技术栈下沉,那问题要简单很多。更全面的趋势/挑战在于数据中心技术栈下沉的过程中,叠加了底层的计算机体系结构重构(从异构走向超异构)。具体分析看后续的分趋势介绍。

3 趋势一:虚拟化成为软硬件的核心

虚拟化是云计算的核心,可以说,没有虚拟化就没有云计算。在自动驾驶汽车上,虚拟化技术也会成为最核心的支撑技术。

汽车超级芯片的软硬件系统栈和传统SOC系统栈的最大区别在于有没有虚拟化。通过虚拟化技术实现对硬件/软件的逻辑切分,提供多个逻辑的硬件/软件供上层软件使用。

虚拟化通常分为两类(虚拟化技术有三类,计算机虚拟化、容器虚拟化、函数虚拟化,函数虚拟化在车端目前应用的可能性不大):

  • 计算机虚拟化:无虚拟化系统的系统软件只有OS,而计算机虚拟化的系统软件通常是Host OS(层1)、Hypervisor(层2)、Guest OS(层3),然后才是VM内的库和应用等更上层的软件。

  • 容器虚拟化:通过容器相关的技术实现地虚拟化技术。流行的容器引擎有Docker、containerd、CRI-O等,而Kubernetes则是流行的容器集群管理系统。

4 趋势二:多域融合,多个单系统融合成复杂宏系统

BOSCH依据功能,把汽车划分为5个功能域:动力域(Power Train)、底盘域(Chassis)、车身域(Body/Comfort)、座舱域(Cockpit/Infotainment)、自动驾驶域(ADAS)。通常情况下,一个域需要一颗或多颗DCU-SOC芯片;而发展趋势,则是完全集中的超级计算机模式,也即把五个功能域融合到一个超大算力的单芯片解决方案。

通过虚拟化技术,实现在单个硬件平台上支撑多个独立域工作的架构。也因此,在DCU域控制器所积累的各种软件生态,可以无缝地迁移到新架构上。

5 趋势三:未来五年,单芯片算力突破20000 TOPS

上图是NVIDIA自动驾驶芯片的发展Roadmap,我们可以看到,每隔两年升级一代,算力基本上提升8倍:

  • 2018年,第一代,Parker,算力1 TOPS。

  • 2020年,第二代,XAVIER,算力30 TOPS。Parker是NVIDIA汽车芯片的第一代产品,主要是试水,因此算力并不是很高,给了第二代直接增长30倍的空间。

  • 2022年,第三代,ORIN,算力250 TOPS。比第二代提升8倍多。

  • 2024年,第四代,THOR,算力2000 TOPS。比第三代提升8倍。

根据这个路线图的发展节奏,到2028年第六代芯片,算力将达到12.8万TOPS(128 POPS)。这个算力有点恐怖,实际上Thor已经基本上达到了目前工艺和封装的上限,未来的算力发展会受工艺和封装极限的约束。因此,我们给出相对保守的预测:

  • 2026年,第五代自动驾驶芯片,算力再提升4倍以上,算力10000 TOPS(10 POPS)左右。

  • 2028年,第六代自动驾驶芯片,算力再提升2倍以上,算力突破20000 (20POPS)TOPS。

6 趋势四:体系结构逐步从异构走向超异构

为什么需要异构计算?一方面,CPU的性能效率是最低的,并且已经性能瓶颈。随着业务对性能的要求越来越高,CPU已经不堪重负;另一方面,系统中大量的性能敏感型计算任务需要放到硬件加速器中进行加速处理,以此来提高性能。

但异构计算也有一些问题。

第一个问题是,异构计算中的加速处理器,其性能和灵活性特征无法兼顾:

  • GPU灵活性较好,但性能效率不够极致;

  • DSA性能好,但灵活性差,难以适应复杂计算场景对灵活性的要求;

  • FPGA功耗和成本高,需要一些定制开发,落地案例不多;

  • ASIC功能完全固定,难以适应灵活多变的复杂计算场景。

另一个严重的问题是计算孤岛问题。我们提供芯片A帮助客户解决问题a,提供芯片B帮助客户解决问题b,依此类推。但这样会产生有很多问题:

  • 只考虑一个问题会顾此失彼,并且不同的芯片间没有协同。而且即使有协同,从架构上也决定了很难高效协同。

  • 多个个体解决方案无法组织成用户需要的“有机”整体。如同“瞎子摸象”一般,当不同供应商给客户提供扇子、绳子、柱子、墙壁的时候,客户是无法组织成“大象”的。

  • 服务器物理空间和功耗有限。无法容纳这么多张单领域或场景解决方案的加速卡,客户需要综合性解决方案。

合适的做法则是,进一步的从异构走向超异构。

一方面,把硬件分层从异构的两层再细分为超异构的三层:

  • 层次一,DSA层。系统中的非常确定的任务沉淀到基础设施层,而DSA层则定位基础设施层加速,既高效又能够满足基础设施层工作任务的灵活性特定。

  • 层次二,GPU层。定位性能敏感业务应用的加速。既有一定的性能加速效率,又能够兼顾业务应用场景的弹性需求。

  • 层次三,最上层的CPU层。负责不适合加速的工作任务处理,CPU也负责兜底。

另一方面,最终承载这一切的必然是三个层次的、多种不同类型处理引擎协同工作的超异构计算架构。

7 趋势五:一切皆服务

经典的C/S架构,一边是客户端的Client程序,另一端是服务器端的Service程序。如果我们进一步把这个架构细化,再考虑微服务化的影响,这样会形成一个微服务依赖网络。

一切皆服务,云计算是由IaaS、PaaS、SaaS等组成的分层服务体系,车端也在推SOA。软件服务化,甚至进一步地微服务化。不考虑SOA和微服务具体实施技术细节的不同,他们共同的特点在于:

  • 通过服务实现不同软件实体间的解耦,以及资源和功能复用。

  • 服务提供者保证服务的高可用,包括服务的性能和延迟等指标、服务所需的资源多寡以及服务的稳定性等,还需要考虑服务的弹性;而服务使用方不用关心这些具体细节。

  • 服务不仅仅可以在本地部署和交互,也可以跨平台部署和交互。部署和交互:可以跨不同的虚拟环境(VM/容器等),也可以跨本地集群的不同硬件实体,甚至跨云网边端不同地理位置的设备。

8 趋势六:云网边端从协同走向融合

协同和融合有什么区别?协同的双方,依然“你是你,我是我”;而融合,则是双方组成了一个新的整体,不分彼此。

协同阶段,通常的系统功能划分是固定的,你做什么,我做什么,大家分工明确,协作完成整个工作。而挑战在于,系统不是静态的,宏观系统复杂而又多变,系统任务的准确分工,几乎不可能。

充分考虑到系统的复杂度和持续变化,充分意识到在设计初期很难把系统分工考虑清楚。并且,即使分工清楚,随着时间推移,系统变化,分工很可能还会发生改变。因此,需要动态的功能划分。

通过计算平台的融合,把云网边端形成一个统一的算力平台,把分工的事情交给上层的软件完成。软件自适应的寻找合适的运行平台,实现算力资源充分而又灵活的使用,实现云网边端的真正融合。

9(目前唯一的)案例:NVIDIA Thor

在NVIDIA GTC Sept 2022上,NVIDIA发布了2000TFLOPS算力的自动驾驶芯片Thor。

Thor SoC能够实现多域计算,它可以为自动驾驶和车载娱乐划分任务。通常,这些各种类型的功能由分布在车辆各处的数十个控制单元控制。制造商可以利用Thor实现所有功能的融合,来整合整个车辆,而不是依赖分布式的ECU/DCU。

多域计算隔离使得并发的时间敏感的进程可以不间断地运行。通过虚拟化机制,在一台计算机上,可以同时运行Linux、QNX和Android等。

多域计算隔离,可以实现应用、数据、资源、服务、性能和安全域等能力的物理上完全隔离。

NVIDIA Thor,是第一个实现多域融合的、集中式的、超大算力的超级终端大芯片。





码上报名

2023第六届无人驾驶及智能驾舱中国峰会,5月11-12日,上海




码上报名

AutoSec 7周年年会暨中国汽车网络安全与数据安全合规峰会,5月11-12日,上海




码上报名

AES 2023 第四届中国国际汽车以太网峰会,6月8-9日,上海


更多文章

智能网联汽车信息安全综述

华为蔡建永:智能网联汽车的数字安全和功能安全挑战与思考

汽车数据合规要点

车载以太网技术发展与测试方法

车载以太网防火墙设计

SOA:整车架构下一代的升级方向

软件如何「吞噬」汽车?

汽车信息安全 TARA 分析方法实例简介

汽车FOTA信息安全规范及方法研究

联合国WP.29车辆网络安全法规正式发布

滴滴下架,我却看到数据安全的曙光

从特斯拉被约谈到车辆远程升级(OTA)技术的合规

如何通过CAN破解汽

会员权益: (点击可进入)谈思实验室VIP会员


END

微信入群

谈思实验室专注智能汽车信息安全、预期功能安全、自动驾驶、以太网等汽车创新技术,为汽车行业提供最优质的学习交流服务,并依托强大的产业及专家资源,致力于打造汽车产业一流高效的商务平台。

 

每年谈思实验室举办数十场线上线下品牌活动,拥有数十个智能汽车创新技术的精品专题社群,覆盖BMW、Daimler、PSA、Audi、Volvo、Nissan、广汽、一汽、上汽、蔚来等近百家国内国际领先的汽车厂商专家,已经服务上万名智能汽车行业上下游产业链从业者。专属社群有:信息安全功能安全自动驾驶TARA渗透测试SOTIFWP.29以太网物联网安全等,现专题社群仍然开放,入满即止。


扫描二维码添加微信,根据提示,可以进入有意向的专题交流群,享受最新资讯及与业内专家互动机会。


谈思实验室,为汽车科技赋能,推动产业创新发展!

谈思实验室 深入专注智能汽车网络安全与数据安全技术,专属汽车网络安全圈的头部学习交流平台和社区。平台定期会通过线上线下等形式进行一手干货内容输出,并依托丰富产业及专家资源,深化上下游供需对接,逐步壮大我国汽车安全文化及产业生态圈。
评论 (0)
  • 运算放大器权威指南 Bruce Carter著作
    从运放基础理论到实际应用及注意事项。是一部详细的教材
  • 数据中心暖通设备
    数据中心的电气设备设计
  • 14、谷景科普0510色环电感超声波震荡后出现不良的常见原因分析
    14、谷景科普0510色环电感超声波震荡后出现不良的常见原因分析
  • 移动端架构师课程

    今天给大家分享一套移动端架构师视频教程,《移动端架构师》一共分为6大阶段,30周,500多课时!提供配套的源码+电子课件(独家)下载!


    架构师两大核心能力:
    1、从0到100构建千万级APP的技术能力
    小型APP逐渐被小程序替代
    移动开发的重心转向
    大型APP开发

    2、驾驭大厂APP架构设计与落地能力
    行业趋于成熟,企业用人倾向于
    具备架构思维与架构设计能力的
    复合型人才


    经历千万级项目全流程,对一个工程师的成长弥足珍贵,但现实中这样的机会凤毛麟角,于是有了咱们这套《移动端架构师》课程

    掌握千万日活APP的架构能力
    · 定制移动端优质解决方案
    · 基础库&框架&模块的技术选型
    · 基础模块&组件设计开发维护

    “技术+管理” 综合发展
    解决项目中关键问题&技术难题
    · 持续优化团队开发流程
    · 提高团队开发能力&效率


    掌握大部分高阶人才必备技术栈
    底层&框架源码深度剖析
    · 多设备多版本兼容适配
    · 主流混合开发框架实践应用


    课程大纲:
    【0】源码+电子书
    【阶段1:Kotlin x Java打造 UI 通用组件】第1周、走进移动端架构师
    【阶段1:Kotlin x Java打造 UI 通用组件】第2周、通用UI组件开发与基础框架设计
    【阶段1:Kotlin x Java打造 UI 通用组件】第3周、高级UI组件定制与解耦设计
    【阶段1:Kotlin x Java打造 UI 通用组件】第4周、Android必备Kotlin核心技术
    【阶段1:Kotlin x Java打造 UI 通用组件】第5周、Android UI核心组件剖析与实战
    【阶段1:Kotlin x Java打造 UI 通用组件】第6周、Android 导航架构探秘
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第7周、线程与线程池核心技术
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第8周、Android网络编程进阶
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第9周、架构首页模块
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第9周+、架构首页分类模块
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第10周、解密Jetpack工具库核心组件
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第11周、架构商品详情模块
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第12周、Android消息机制与类加载
    【阶段3:主流架构演进与项目架构改造】第13周、玩转Kotlin x Java 设计模式
    【阶段3:主流架构演进与项目架构改造】第14周、主流架构模式演进之路
    【阶段3:主流架构演进与项目架构改造】第15周、主流架构实战搜索模块
    【阶段3:主流架构演进与项目架构改造】第16周、IOC架构设计
    【阶段3:主流架构演进与项目架构改造】第17周、构建与打包能力
    【阶段4:混合架构设计与开发】第18周、走进Flutter开发
    【阶段4:混合架构设计与开发】第19周、Flutter混合架构原理剖析与应用
    【阶段4:混合架构设计与开发】第20周、Flutter实战应用与性能优化
    【阶段4:混合架构设计与开发】第21周、走进RN开发
    【阶段4:混合架构设计与开发】第22周、RN混合架构原理剖析与应用
    【阶段5:稳定性及性能调优】第23周、稳定性优化
    【阶段5:稳定性及性能调优】第24周、性能优化
    【阶段5:稳定性及性能调优】第25周、开发技能拓展
    【阶段6:前后端接口设计与配置中心系统】第26周、后端-DAU超千万的移动端接口设计实现
    【阶段6:前后端接口设计与配置中心系统】第27周、前端-管理后台设计实现
    【阶段6:前后端接口设计与配置中心系统】第28周、【SDK+服务端+控台】配置中心架构实现
    【阶段6:前后端接口设计与配置中心系统】第29周、HiAbility SDK开发
    【阶段6:前后端接口设计与配置中心系统】第30周、学成“下山”
  • 面向多功能嵌入式客户端系统的高端平台
    面向多功能嵌入式客户端系统的高端平台 白皮书
  • 基于ESP32-CAM的人工智能机器人设计资料
    基于ESP32-CAM的人工智能机器人设计资料
  • 实用电源电路集锦-开关电源、直流稳压电源、交流稳压电源等

    一、直流稳压电源

    二、可调直流稳压电源

    三、开关电源

    四、交流稳压电源

    五、变换电源

    六、逆变电源

    七、充电电源

    八、应急电源

  • 红外按键之USB键盘

    红外按键之USB键盘

    红外按键之USB键盘

    红外按键之USB键盘

  • 移动端架构师体系课(30周完整版+源码+电子书)
    今天给大家分享一套移动端架构师视频教程,《移动端架构师》一共分为6大阶段,30周,500多课时!提供配套的源码+电子课件(独家)下载!

    课程大纲:
    【0】源码+电子书
    【阶段1:Kotlin x Java打造 UI 通用组件】第1周、走进移动端架构师
    【阶段1:Kotlin x Java打造 UI 通用组件】第2周、通用UI组件开发与基础框架设计
    【阶段1:Kotlin x Java打造 UI 通用组件】第3周、高级UI组件定制与解耦设计
    【阶段1:Kotlin x Java打造 UI 通用组件】第4周、Android必备Kotlin核心技术
    【阶段1:Kotlin x Java打造 UI 通用组件】第5周、Android UI核心组件剖析与实战
    【阶段1:Kotlin x Java打造 UI 通用组件】第6周、Android 导航架构探秘
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第7周、线程与线程池核心技术
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第8周、Android网络编程进阶
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第9周、架构首页模块
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第9周+、架构首页分类模块
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第10周、解密Jetpack工具库核心组件
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第11周、架构商品详情模块
    【阶段2:解锁Android高阶技能,探秘实战Jetpack】第12周、Android消息机制与类加载
    【阶段3:主流架构演进与项目架构改造】第13周、玩转Kotlin x Java 设计模式
    【阶段3:主流架构演进与项目架构改造】第14周、主流架构模式演进之路
    【阶段3:主流架构演进与项目架构改造】第15周、主流架构实战搜索模块
    【阶段3:主流架构演进与项目架构改造】第16周、IOC架构设计
    【阶段3:主流架构演进与项目架构改造】第17周、构建与打包能力
    【阶段4:混合架构设计与开发】第18周、走进Flutter开发
    【阶段4:混合架构设计与开发】第19周、Flutter混合架构原理剖析与应用
    【阶段4:混合架构设计与开发】第20周、Flutter实战应用与性能优化
    【阶段4:混合架构设计与开发】第21周、走进RN开发
    【阶段4:混合架构设计与开发】第22周、RN混合架构原理剖析与应用
    【阶段5:稳定性及性能调优】第23周、稳定性优化
    【阶段5:稳定性及性能调优】第24周、性能优化
    【阶段5:稳定性及性能调优】第25周、开发技能拓展
    【阶段6:前后端接口设计与配置中心系统】第26周、后端-DAU超千万的移动端接口设计实现
    【阶段6:前后端接口设计与配置中心系统】第27周、前端-管理后台设计实现
    【阶段6:前后端接口设计与配置中心系统】第28周、【SDK+服务端+控台】配置中心架构实现
    【阶段6:前后端接口设计与配置中心系统】第29周、HiAbility SDK开发
    【阶段6:前后端接口设计与配置中心系统】第30周、学成“下山”



    移动开发“两极分化”,没有差不多的“中间层”,唯有尽早成长为架构师,你的职业道路才能走的更远更稳!

    架构师两大核心能力:
    1、从0到100构建千万级APP的技术能力
    小型APP逐渐被小程序替代
    移动开发的重心转向
    大型APP开发

    2、驾驭大厂APP架构设计与落地能力
    行业趋于成熟,企业用人倾向于
    具备架构思维与架构设计能力的
    复合型人才


    经历千万级项目全流程,对一个工程师的成长弥足珍贵,但现实中这样的机会凤毛麟角,于是有了咱们这套《移动端架构师》课程

    掌握千万日活APP的架构能力
    · 定制移动端优质解决方案
    · 基础库&框架&模块的技术选型
    · 基础模块&组件设计开发维护

    “技术+管理” 综合发展
    解决项目中关键问题&技术难题
    · 持续优化团队开发流程
    · 提高团队开发能力&效率


    掌握大部分高阶人才必备技术栈
    底层&框架源码深度剖析
    · 多设备多版本兼容适配
    · 主流混合开发框架实践应用
  • 晶体管电路设计 铃木雅臣著作
    内涵晶体管基础知识与晶体管放大电路制作。包括OP放大器制作等。
  • 从0写自己的Linux x86操作系统
    分享一套操作系统课程——从0写自己的Linux x86操作系统,附源码+课件+开发工具+参考资料+磁盘映像下载。

    适用人群
    对操作系统内部工作机制感兴趣,想要设计操作系统的大学生、软件开发人员

    课程采用从0行代码编写的方式,教你如何写一个类似于Linux 0.11的x86操作系统,从而深入掌握操作系统的工作原理。

    课程大纲
    第一阶段:引导程序设计
        设计boot程序,接管计算机运行权
        设计loader程序,加载并解析操作系统内核
    第二阶段:多进程管理
        增加中断处理模块,可处理硬件中断和异常
        利用多任务机制,实现系统中多进程的运行
        实现信号量与锁,允许进程之间同步和互斥
    第三阶段:虚拟内存管理
        为系统增加页表,实现进程加载到虚拟地址
        利用分页机制,让进程之间相互隔离,运行互不影响
    第四阶段:tty与文件系统
        增加文件系统模块,可从磁盘上加载程序并执行
        支持标准输入输出文件,允许应用使用printf输出
    第五阶段:命令行shell实现
        实现命令行接口,解析命令行参数并执行
        创建自己的应用程序,并在shell中动态加载并执行
  • 中低压配电实用技术.pdf
    中低压配电实用技术.pdf
  • 中低压配电网装置性违章的表现与整治.pdf
    中低压配电网装置性违章的表现与整治.pdf

  • 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。阻抗匹配是微波电子学的一部分,也是射频电路中非常重要的一部分,主要用于传输线路中,以达到能够将所有高频微波信号传输到负载点的目的。回溯到原点,提高能源效率。阻抗,顾名思义就是对电路中电流起到阻碍作用的元器件。我们在射频电路中,又引入了特征阻抗和等效阻抗两个概念。特征阻抗是射频传输线的一个固有特性,其物理意义是在射频传输线上入射波电压与入射波电流的比值,或者反射波电压和反射波电流的比值。等效阻抗也是传输线理论的一个概念,
    cxtf004 2023-05-30 14:58 138浏览
  • 一、二极管基础 1、   基础知识 2、   各项参数: (1)    结电容       结电容有两种,分别是势垒电容和扩散电容。        势垒电容:PN结两端电压变化,引起积累在中间区域的电荷数量的改变,从而呈现电容效应,这个电容就是势垒电容。 扩散电容:当有外加正向偏压时,在PN结两侧的少子扩散
    HGno1 2023-05-29 22:55 153浏览
  • 网约车行业竞争越来越卷,自动驾驶成为网约车平台重要的发力点,滴滴、T3出行、曹操出行等网约车平台相继对外宣布自动驾驶的计划并提出了“小目标”。滴滴发布两款自动驾驶核心硬件——“北曜Beta”激光雷达和三域融合计算平台“Orca虎鲸”,并宣布首款自动驾驶量产车型计划于2025年接入滴滴共享出行网络。T3出行联手轻舟智航在苏州启动Robtaxi的公开运营,并计划到2026年末,L4自动驾驶车辆商业运营达1000辆。曹操出行与吉利汽车达成战略合作,计划围绕出行平台构建集车内空间开发、定制车、智能驾驶、
    刘旷 2023-05-30 10:51 181浏览
  • 近日,经纬恒润AUTOSAR基础软件产品INTEWORK-EAS-CP成功适配智芯半导体的Z20K14x产品家族。同时,经纬恒润完成了对智芯半导体Z20K14X 产品MCAL软件适配和工程集成,为智芯半导体提供了全套AUTOSAR解决方案。  左图:经纬恒润AUTOSAR EAS CP软件工程配置页面  右图:智芯半导体Z20K14x产品板   通过本次合作,智芯半导体的芯片产品将以功能更加完善、性能更加量化、服务更加完整的状态面向车
    hirain 2023-05-30 11:12 176浏览
  •  近日,财政部会计司发布了《关于公布电子凭证会计数据标准(试行版)的通知》,为做好电子凭证会计数据标准深化试点工作,研究制定了9类电子凭证的会计数据标准。在通知的《电子凭证会计数据标准——全面数字化的电子发票(试行版)》指南中,明确了数电票报销入账归档的具体处理方式。    指南明确: 接收方取得数电票报销入账归档的,应按照《财政部 国家档案局关于规范电子会计凭证报销入账归档的通知》(财会〔2020〕6号,以下称《通知》)和《会计档案管
    科技财经汇 2023-05-29 20:47 168浏览
  • 当谈及现代科技中的传感器射频/微波技术时,陶瓷线路板是不可或缺的重要组成部分。作为这一领域的创新引领者,陶瓷线路板以其卓越的性能和独特的特点,推动着传感器射频/微波技术的革新。本文将为您揭示陶瓷线路板在该领域的重要性,并通过数据展示其卓越的优势。 陶瓷线路板以其材料特性和制造工艺成为传感器射频/微波应用的理想选择。 一、首先,陶瓷材料具有优异的机械强度和耐高温性能,能够承受高功率和极端环境条件下的工作。根据数据显示,陶瓷线路板的机械强度远超过传统的有机基板,可以承受更高的压力和振动,从而
    斯利通陶瓷电路板 2023-05-29 16:58 235浏览
  • [2] 电容器与电容 (1)什么是电容器? 电容器是用于储存电荷的器件,其中包含一对或多对由绝缘体分隔的导体。容器通常由铝、钽或陶瓷等材料制成。各种材料的电容器在系统中使用时具有各自的优缺点,如表 1 所示。陶瓷电容器通常是理想的选择,因为其电容变化最小,而且成本较低。                 (2)  直流电压降额        
    HGno1 2023-05-29 23:42 148浏览
  • 前言 2022年,全球半导体产业连续高增长,进入调整周期。与此形成对比,在新能源汽车、光伏、储能等需求带动下,第三代半导体产业保持高速发展,全球化供应链体系正在形成,竞争格局逐步确立,产业步入快速成长期。而国内第三代半导体产业经过前期产能部署和产线建设,国产第三代半导体产品相继开发成功并通过验证,技术稳步提升,产能不断释放,国产碳化硅(SiC)器件及模块开始“上机”,生态体系逐渐完善,自主可控能力不断增强,整体竞争实力日益提升。 01 产能释放,第三代半导体产业即将进入”战国
    普赛斯仪表 2023-05-29 17:31 156浏览
  • 据每经AI快讯:国瓷材料以3.98亿元收购赛创电气(铜陵)有限公司 100%股权,赛创电气(铜陵)有限公司更名为国瓷赛创电气(铜陵)有限公司 国瓷材料收购大赛创意电气(铜陵)一事,是中国电子元器件行业的一则重要收购案例。 在这个收购案例中,国瓷材料是一家中国领先的电子陶瓷材料生产商,而创意电气是一家专门从事电子元器件研发和制造的企业,主要产品包括电源芯片、功率晶体管等。此次收购将有助于国瓷材料进一步扩大其在电子元器件领域的业务,并加强其在中国电子元器件行业的市场地位。 从积极的角度来看,这
    斯利通陶瓷电路板 2023-05-29 16:57 219浏览
  • 今日(5月29日),广东省人民政府网站发布,中共广东省委、广东省人民政府关于新时代广东高质量发展的若干意见(以下简称意见)。意见指出,要坚持制造业当家,强化高质量发展的产业根基。《意见》指出,到2027年,全省高质量发展实现新进步,自主创新能力明显提高。到2035年,高质量发展实现更大成效,科技创新能力大幅跃升,城乡区域发展更加协调更加平衡。意见称,广东建设现代化产业集群。着力发展先进制造业,打造梯次型产业格局,争创国家先进制造业集群。推动20个战略性产业集群发展,重点加快发展集成电路、新能源汽
    传感器专家网 2023-05-29 19:54 117浏览
  • [1] 压降 (1)什么是压降? 压降电压 VDO 是指为实现正常稳压,输入电压 VIN 必须高出所需输出电压 VOUT(nom) 的最小压差。 (2)决定压降的因素是什么?                           
    HGno1 2023-05-29 23:34 142浏览
  • 射频(RF)电路板设计虽然在理论上还有很多不确定性,但RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理,本文将集中探讨与RF电路板分区设计有关的各种问题。1、微过孔的种类电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰的最佳情况下连接,这就需要用到微过孔(microvia)。通常微过孔直径为0.05mm~0.20mm,这些过孔一般分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(th
    攻城狮华哥 2023-05-30 11:27 150浏览
  • MEMS芯片和ASIC芯片是一个MEMS传感器中技术和价值含量最高的部分。你知道MEMS芯片是怎么被制造出来的吗?MEMS芯片与集成电路芯片有什么区别?此外,谈到MEMS传感器,我们还常说ASIC芯片,ASIC芯片是什么?对MEMS传感器有什么作用?MEMS传感器的ASIC芯片相比其他ASIC芯片有什么特别?MEMS传感器的主要构造?MEMS芯片与集成电路芯片有什么区别?MEMS是Micro-Electro-MechanicalSystem的缩写,中文名称是微机电系统,是将微电子电路技术与微机械
    传感器专家网 2023-05-29 20:00 125浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦