如何提高天线的隔离度?

5G通信射频有源无源 2023-06-01 00:00


本文将分为三部分去讲述天线隔离的定义、影响天线隔离度的几个关键因素和天线如何提高隔离度,希望对大家有所帮助。

part1:天线隔离的定义


前不久,我们电巢射频组接到了一个射频相关的咨询项目,客户需要解决一个天线的隔离度问题,而且他们的要求还比较高,要求隔离度达到30dB。

户自己通过CST仿真得到的仿真数据,和他们实测的数据对不上,所以找到我们电巢,希望解决这个仿真和实测对不上的问题。

我们就针对这个项目做了一些天线隔离度技术问题的研究

现在的移动通信业务,已经进入了5G时代,那些伴随5G时代而来的名词我相信大家都不会陌生,比如多天线技术,大规模MIMO技术(也就是多发多收技术),多频段载波聚合等等。


这些技术的引入和应用,都没办法绕开一个关键问题,就是同时工作的射频频段和制式变多了。

比如射频终端广域网频段有LTE的band12345678,还有38394041等等,5GNR除了有和LTE相同的频段划分之外,还多了3.5G频段以及毫米波频段。

除了广域网,终端通常都携带有WIFI和蓝牙功能

频段变多了,终端上的天线也就变多了。

一个终端,可能存在多个天线都在同时发射和接收不同信号,这些信号有可能工作在相邻的频段,甚至是相同的频段,比如WIFI和蓝牙。

这些同时工作的射频信号,如果其中一个发射信号的工作频率恰好落在另一个信号的接收频段,那么发射的信号就会对接收信号造成严重干扰;

即使是发射信号的带外杂散落在其他信号的接收频段,也有可能带来无法忽视的噪声影响。

讲一个真实案例,我曾经在做项目的过程中,碰到一个非常严重的信号干扰问题,当时的情况是,LTEB41的发射杂散严重干扰了WIFI2.4G的接收信号,导致共存测试无法通过。

虽然最后这个问题归咎于一颗射频滤波器件,并最终通过软件时分的方式来解决。

当时LTE天线和WIFI天线之间的隔离度约10dB,已经满足了终端天线隔离度的基本要求。

但是我认为,如果可以将LTE的天线与WIFI天线之间的隔离度再提高一些,也会是另外一个解决问题的有效方法。

什么是天线之间的隔离度呢?天线作为射频无线通路上的最后一个负载,承载着收发信号的使命,它本质上是一个双向的无源器件。

它并不是只发有用信号,只要是源端供过来的所有信号,有用没用,它都会发射出去,只是不同频点的信号,发射出去的效率也不一样,在谐振频点的信号发射效率就高,其他频点效率就低点。

发射的同时呢,它也接收信号,不管什么信号都接收,当然一样的,谐振频点接收效率高,其他频点效率低。

这里有两个天线,A天线发射的信号会被B天线接收,同样的,B天线发射的信号也会被A天线接收。


在专业上,这个物理现象叫做天线互耦。

隔离度就是用来衡量天线互耦程度的大小的物理量。

用更直接一点方式来讲,或者说更接地气的方式来讲,假定两个天线构成一个双端口网络,那么两个天线之间的隔离度就是天线之间的S21。

所以测试隔离度的方法,就是将两个天线接入网分的两个端口直接测S21就可以了。

part2:天线隔离度的关键因素


接下来为大家演示几个测试实例,这些实验都是在我们的电巢共享实验室里测试完成的。

如图,这块板子上有8个天线,分别命名为1号~8号。

这8个天线相互之间的隔离度到底如何呢,我们先测试相距较远的两个天线1号和2号,如红框所示。

可以看到,1号和2号这两个天线之间的隔离度很好,已经达到30dB左右。

我们接下来测试两个离得比较近的天线,2号和7号。

     从数据上来看,这两个天线的隔离度差了不少,这说明距离应该是会影响天线隔离度的。

      接下来,我们测试2号和3号,2和3之间的距离与2和7之间的距离一样,我们看看隔离度是不是一样

可以看到,隔离度差了很多,用绝对值来换算,和上一组天线相比,隔离度差了4倍还多。

这说明,距离并不是影响隔离度的唯一要素,一定还有什么其他原因在影响天线的隔离度。

    没错,天线的辐射方向也是影响天线隔离度的一个重要因素。

    标准天线的辐射方向图是可以从理论分析得出的。

    当两个天线辐射的最强方向相对时,即使两个天线间的距离比较远,它们之间依然会产生比较强的互耦效应,导致隔离度变差。


那么如何提升天线之间的隔离度呢?

对于独立的天线个体,提升隔离度的方式主要有四种。

下面我们一一来演示一下。

第一种方式就是拉开天线之间的距离。

我们用一种更直观的方式来演示。

这是两根2.4G的偶极子天线。我们来看看距离对隔离度的影响。

首先是距离5cm时的隔离度。

然后是相距10cm时,两个天线的隔离度

     可以看到,距离10cm时,天线之间的隔离度要比5cm间距的隔离度好一些。

      因此,在有条件的情况下,我们尽量将两个天线的间距拉大,这是提升隔离度的有效方式。

     但是终端狭小的结构空间,往往限制了天线间的距离。

     那么如何在有限的结构空间里提升天线的隔离度呢?早期基站天线会使用加隔离墙的方式来提升隔离度

我们来试试这种方法有没有效果!


      从实验结果来看,加隔离墙确实有效果,但是墙的高度会影响隔离的最终效果,具体加多高的墙才能达到隔离指标,很难通过简单的经验判断得出结论。

      而且终端上有没有空间给你加这个隔离墙也是一个问题。所以我们需要试试其他的方法,比如试试让两个天线的极化方向垂直。

     极化方向垂直的两个天线,即使在距离只有5cm的情况下,也依然得到了极高的隔离度指标,这说明,这种方法非常有效。看起来我们只需要判断出两个天线的极化方向,然后让他们互相垂直就好了,so easy!

如何判断独立天线的极化方式呢?

天线的极化方向,就是天线辐射电场的方向,因此通过天线上的电路方向,就可以简单判断出天线的极化方向。

而对于独立线天线来说,它的电流方向也可以简单的通过天线外形来进行判断。

      既然天线极化垂直可以提升隔离度,那么在终端上是否可以通过这种方式来提升隔离呢?

      我们直接来测试一下,这个板子上的天线2号和6号



      从测试结果可以看出,看似垂直的两个天线隔离度却非常差,这是什么原因呢?

这是因为,我们以为天线只是这一小块的金属铜皮结构,但实际上,构成辐射体的是这整块板子。

确实,在我们以为就是天线本体的这两块金属表面,电流确实垂直,但是这块板子上其他地方的电流就不垂直了。

下面两张图展示了天线工作时,板子上的电流方向。


     可以看到,两个天线工作时,板子上的电流是平行的,因此也就不构成极化垂直的条件,隔离度自然不会好。

我们这个板子的环境其实是很简单的,干干净净,就一块PCB板。

电流方向也很规整,就是这样也没办法做到让两个天线极化方向垂直,而真实终端里面的环境会复杂很多,极化方向更能确定。

因此通过让两个天线相互垂直的方式来提升隔离度好像有点不太靠谱。

part3:终端天线如何提高隔离度


      在《浅谈天线隔离度问题上篇——天线隔离的定义》中,我们提到天线辐射方向图也会影响天线的隔离度。

     只需将两个天线辐射最弱的方向相对,就可以获得较好的隔离度指标。

     但是天线辐射方向图有时候并没有办法通过简单的经验判断来得出,特别是我们终端中的PCB天线,PIFA天线,IFA天线

     这些天线的辐射方向图受到天线周围环境以及地平面的影响,光靠看是看不出个123的。

     要想提前预知天线辐射的方向图,只能通过准确的3D电磁场仿真才能得出结果。

     比如说我们现在这块板子,就用了CST来进行仿真设计,预测了天线的方向图以及天线的隔离度。

     大家可以一起来看看,我们仿真和实测的结果到底与多大的区别。



1、2号天线隔离度仿真与实测对比



1、4号天线隔离度仿真与实测对比

通过仿真,我们可以预知天线的方向图,从而提前修改天线的形状,位置,以达到提高天线隔离度的目的。

但是,如果说天线位置已经固定,并且通过更改天线形式,已经无法做到隔离度的提升时,有没有其他的办法来解决这个问题呢?

也是有的。天线间的互耦会影响隔离度,那么如果通过匹配解耦的方式来调节,理论上来说也是有可能让隔离度再次优化的。

退耦网络拓扑图如下。

D网络作为一个四端口网络,起到一个退耦的作用,它的目标就是通过网络变换将S21变为0。

在网络变换的过程中,S11和S22必然会劣化,所以需要匹配网络M来将天线匹配到一个合适的值。

    我们将这两个天线当成一个双端口网络,然后用网分测试出这个双端口网络的S参数,保存为SNP文件并导入ADS仿真。

   这里采用ADS仿真是为了快速找到合适的集总参数器件,实际匹配情况可能和仿真结果略有差别。

    下面是仿真结果。

改善前

改善后

过仿真得到器件值以后,我们在真实主板中将这些器件焊接上去,看看隔离度能否得到真实优化。

实际使用的匹配器件,和仿真器件略有差别,仿真结果只作为定性,测试结果需以实际器件为准。




    通过实测结果与仿真结果对比,我们可以看到,隔离度曲线基本吻合,而且相比之前有比较大改善,从-10dB直接优化的-20dB,而天线本身的VSWR则没有太过于劣化。

     这说明通过添加退耦网络改善天线隔离性能是真实有效的。

终端天线的隔离问题确实是天线设计中的一个难点,但是我们有多种方法来进行规避。但是无论哪种方法,都需要在开发前期做预设计,充分考虑后期调试可能出现的情况。


☆ END ☆

精彩回顾

  • 腔体滤波器技术提升解决方案
  • 腔体滤波器设计之----自动单腔频率温飘
  • 秒仿糖葫芦串形低通
  • 秒仿糖葫芦型低通后续之----低通优化
  • TE01模介质滤波器滤波器
  • 无源互调浅析
  • 如何选择谐振杆的尺寸使功率容量达到最佳
  • 金属介质混合+零腔案例
  • 三模并联耦合介质波导滤波器仿真实例
  • 同轴高低阻抗型低通的公差影响几何?
  • Coupfil对高阶强零点生成的结果偶会出错
  • 陶瓷滤波器的各项制备工序讲解_简介篇
  • (干货)陶瓷滤波器讲解----材料篇
  • (干货)陶瓷滤波器讲解----材料制备篇
  • 细而全的5G产业链详解
  • 陶瓷滤波器讲解----陶瓷材料检测篇
  • BAW,SAW和FBAR滤波器剖析
  • LTCC、IPD、SAW、BAW、FBAR滤波器入门以及应用场景分析

欢迎加入滤波器、多工器、天线、环形隔离器、功分耦合器、连接器、线缆负载等无源器件的大家庭,关注后可加群

长按扫左侧二维码可关注

本团队提供可信可靠的滤波器相关产品各种定制化服务,响应快,专业强,敬请咨询微信号18681587206点"在"点个赞

点"在看"点个赞,才算真的看完呦

5G通信射频有源无源 5G通信,微波射频器件,TR组件,有源组件,无源器件,滤波器,双工器,合路器,同轴腔体,LC滤波器,高通带阻,功分耦合,环形器,隔离器,功放PA,低噪放LNA,同轴开关,线缆组件,转接器,连接器,毫米波器件以及设备,波导
评论 (0)
  • 基于CH340N的USB转TTL模块-MINI-A技术手册
    基于CH340N的USB转TTL模块-MINI-A技术手册
  • 电动车充电器电路图大全120套
    很全的电动车充电器图纸大全,总共120套,入门提高的必备资料!
  • 15、常规0608工字电感的电性能都一样吗
    15、常规0608工字电感的电性能都一样吗
  • 16、谷景电子常规0608工字电感性能升级应用案例分享
    16、谷景电子常规0608工字电感性能升级应用案例分享
  • 基于51单片机的智能台灯洞洞板设计技术手册
    基于51单片机的智能台灯洞洞板设计技术手册
  • BL0910物联网计量,BL0937B单相,内置振荡器,有功电能,有效值,电能计量,BL0939 内置时钟免校准计量芯片。 ...
    BL0937B是一颗宽量程单相多功能电能计量芯片,适用于单相插座表、 单相插排、 智能家电控制电路等应用,具有较高的性价比。BL0939免校准、用电安全监测、双路、可多路级联.   十相交/直流电能计量芯片BL0910
  • [11章]SpringBoot3.0 + RocketMq 构建企业级数据中台2023
    SpringBoot3.0 + RocketMq 构建企业级数据中台,RocketMq是一个队列模型的消息中间件,具有高性能、高可靠、高实时、分布式特点;
    Producer、Consumer、队列都可以分布式;
    Producer向一些队列轮流发送消息,队列集合称为Topic,Consumer如果做广播消费,则一个consumer实例消费这个Topic对应的所有队列,如果做集群消费,则多个Consumer实例平均消费这个topic对应的队列集合;
    能够保证严格的消息顺序;
    提供丰富的消息拉取模式;
    高效的订阅者水平扩展能力;
    实时的消息订阅机制;
    亿级消息堆积能力;
    较少的依赖。

    Spring Boot 是所有基于 Spring 开发项目的起点。Spring Boot 集成了绝大部分目前流行的开发框架,就像 Maven 集成了所有的 JAR 包一样,Spring Boot 集成了几乎所有的框架,使得开发者能快速搭建 Spring 项目。
    Spring Boot 的核心设计思想是“约定优于配置”。基于这一设计原则,Spring Boot 极大地简化了项目和框架的配置。比如在使用 Spring 开发 Web 项目时,我们需要配置 web.xml、Spring 和 MyBatis 等,还需要将它们集成在一起。而使用 Spring Boot 一切将变得极其简单,它采用了大量的默认配置来简化这些文件的配置过程,只需引入对应的 Starters(启动器)。

    数据中台是在政企数字化转型过程中,对各业务单元业务与数据的沉淀,构建包括数据技术、数据治理、数据运营等数据建设、管理、使用体系,实现数据赋能。数据中台,是新型信息化应用框架体系中的核心。

  • 17、谷景0510色环电感封装尺寸及电流升级应用案例分享
    17、谷景0510色环电感封装尺寸及电流升级应用案例分享
  • Python3高级核心技术97讲,高级进阶的必学课程

    分享课程——Python3高级核心技术97讲,高级进阶的必学课程,附源码+PDF课件下载。

    Python3高级核心技术由97讲组成,涵盖了多个方面的内容。以下是其中一部分重要内容的概述:
    高级函数和闭包:
    介绍高阶函数的概念,如map、filter、reduce等;
    讲解闭包的原理和用法,展示闭包在实际项目中的应用。
    迭代器和生成器:
    解释迭代器和可迭代对象的概念;
    探讨生成器的原理和用法,并介绍协程的概念。
    并发编程:
    讲解多线程和多进程编程的基本概念;
    引入线程间通信、锁和条件变量等概念。
    数据库编程:
    介绍Python与关系型数据库的交互;
    演示如何使用Python操作数据库进行增删改查。
    异常处理和调试:
    讲解异常处理的基本概念和错误处理技巧;
    提供调试技巧,如断点调试、日志调试等。

  • Vue3+Vite+Vant-UI 开发双端招聘APP(23年新课+完整版32章+源码
    分享课程——Vue3+Vite+Vant-UI 开发双端招聘APP,23年新课,完整版32章,附源码下载。

    课程以业务驱动技术栈,将真正的商用级项目复原在课程中,使用Vite、Vue3、Vant3UI、Pinia和VueUse等前沿技术,从构建、研发、测试,完成整个全流程的学习。让你在掌握技术的同时,也能提升作为开发者的综合素养。项目功能相对完善,界面美观,手把手带你做出亮眼的作品。
  • BL0910物联网计量,BL0937B单相,内置振荡器,有功电能,有效值,电能计量,BL0939 内置时钟免校准计量芯片 ...
    ,BL0937B是一颗宽量程单相多功能电能计量芯片,适用于单相插座表、 单相插排、 智能家电控制电路等应用,具有较高的性价比。BL0939免校准、用电安全监测、双路、可多路级联。十相交/直流电能计量芯片BL0910
  • Python多领域场景实战课 快速成为多面手[完结22章]
    [完结22章]Python多领域场景实战课 快速成为多面手,Python在各个编程语言中比较适合新手学习,Python解释器易于扩展,可以使用C、C++或其他可以通过C调用的语言扩展新的功能和数据类型。Python也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。

    python的主要用途有:1、web开发;2、网络爬虫;3、数据科学;4、自动化运维;5、数据库编程;6、网络编程;7、图形处理、数学处理、文本处理;8、多媒体应用。Python是一种广泛使用的高级编程语言,具有易读性、扩展性和多用途性。特别是在数据分析领域,Python提供了如Pandas、NumPy等多种库,这些工具不仅方便了数据清洗和预处理,还能进行高级数据分析和可视化。

    那开发网站需要用到哪些知识呢?
    1、python基础,因为用python开发的,所以python指定要会,最起码你也得会条件判断,循环,函数,类这些知识;
    2、html、css的基础知识,因为要开发网站,网页都html和css写的,最起码这些知识你得会,就算不会写前端,开发不出来特别漂亮的页面,网站,最起码要能看懂html标签是;
    3、数据库基础知识,因为开发一个网站的话,数据存在哪里,就是在数据库里,那你最起码要会数据库的增删改查吧,要不然怎么存数据,取数据呢
      上面这些知识会的话,开发一个简单的小站就没有问题了,如果想开发比较大型的网站,业务逻辑比较复杂的,那就得用到其他的知识了,比如说redis、MQ等等。

    Python语言优点介绍
    (1)语法简洁而清晰,代码的可读性高。Python 的语法要求强制缩进,用这种强制缩进来体现语句间的逻辑关系,显著提高了程序的可读性。
    (2)开发效率高。由于它简单明确,所以它也是开发效率比较高的一种编程语言。
    (3)跨平台特性。Python 可以真正做到跨平台,比如我们开发的程序可以运行在Windows、Linux、MacOS系统下。这是它的可移植性优势。
    (4)大量丰富的库或扩展。Python 常常被昵称为胶水语言,它能够很轻松地把用其他语言编写的各种模块(尤其是 C/C++)轻松地联结在一起。
    (5)代码量少,一定程度上提高了软件质量。由于使用 Python 语言编写的代码量相比别的语言来说小很多,所以说,它出错的概率也要小很多,这在一定程度上也提高了编写的软件的质量。
  • 无线神经接口的超低功耗集成电路设计
    无线神经接口的超低功耗集成电路设计
  • FM100规格书 FM101规格书 快速充电接口IC
    FM100/FM101 是一款支持 Quick Charge 2.0(QC 2.0)快速充电协议的充电接口控制器 IC,可自动
    识别快速充电设备类型,并通过 QC2.0 协议与设备握手,使之获得设备允许的安全最高充电电压,在保
    护充电设备的前提下节省充电时间。
    
  • 导语:CINNO Research统计数据表明,1H'23中国大陆半导体设备厂商市场规模前十大公司合计超160亿元,同比增长39%,环比下降9%。目前整体半导体市场仍处于下行周期,下游厂商纷纷调整产能及扩产进程以应对市场低谷期,中国大陆半导体设备厂商市场规模短期稍有回落,长期呈稳定增长。CINNO Research统计数据表明,1H'23中国大陆半导体设备厂商市场规模Top10营收合计约162亿元,同比增长39%,环比下降9%。入围1H'23中国大陆半导体设备厂商市场规模Top10与2022年相
    CINNOResearch 2023-09-28 14:00 135浏览
  • 键盘与鼠标是系统上最常使用的人机接口装置(HID/Human Interface Device),在早期以有线方式做连接,而现在则以蓝牙连线为主流,下列蓝牙装置的使用情境你可能也不陌生,例如:远程开会,同时使用蓝牙耳机、蓝牙键盘与鼠标等装置,但又加上各种其他无线装置的干扰,造成连线问题或使用不顺畅。这类情况不仅造成使用者体验不佳,还可能影响品牌形象,甚至产生退货问题!针对这类风险,百佳泰能够提供使用者情境模拟测试,可以测试蓝牙装置在不同应用情境下是否会发生问题。根据百佳泰丰富的认证测试经验,我们
    百佳泰测试实验室 2023-09-28 11:44 190浏览
  • 智能汽车应用生态的需求高速成长近年来全球车用半导体芯片市场大幅快速成长,根据摩根士丹利(Morgan Stanley) 2023年所发布的最新报告中指出,未来五年内的汽车高效能运算Automotive HPC (High-Performance Computing)半导体市场将会整整成长三倍,整体潜在市场估计将于2023年达到20亿美元,并且在2027年增长至60亿美元,年复合增长率(CAGR)为可观的29%。与此同时,受惠于汽车高效能运算芯片客制化设计需求的增加,芯片设计服务厂的预估累积收益可
    百佳泰测试实验室 2023-09-28 11:26 238浏览
  • 《商业计划书》伟大的梦想促进人类的进步人类的进步孕育出新的人类商业计划是梦想远航的风帆旧人类用交换堆砌梦想能量首先成立公司储备物联网、AIGC、区块链、虚拟货币、核能推进器、等离子风、磁场对核变、基因培养、克隆人培养方面的知识和人才第二步 秘密研发大胆进行商业运作吸纳赞助和运营资金注入研发中第三步 从微型化模型做起从原理、模型、试验、实验、复现、模型放大、规模规划、合理规模,第四步 宇航与宇宙新生儿,机器人与新生儿合体,新人类创造新文明和宇宙新秩序第五步 人类落幕 新地球诞生第六步 新宇宙诞生第
    丙丁先生 2023-09-29 08:34 77浏览
  • 智康护智慧养老院建设解决方案是基于信息技术和智能化技术,为养老院提供更高效、更便捷、更舒适的服务。以下是一些常见的解决方案: 1. 信息管理系统: 建立完善的信息管理系统,包括居民信息管理、医疗信息管理、健康监测等,实现信息的集中管理和快速查询,提高工作效率。 2. 智能安防系统: 安装智能安防设备,如视频监控、人脸识别、门禁系统等,确保安全性,并提供紧急求助功能和自动报警机制。 3. 健康监测与远程护理: 利用智能穿戴设备、传感器等监测居民的健康状况,如体温、心率、睡眠
    新导智能 2023-09-28 11:33 179浏览
  • 集睿致远/ASL推出的CS5211是一款可将eDP输入转换为LVDS信号的桥接芯片,CS5211内置LVDS发射机配备灵活的OpenLDI/SPWG位映射,能够驱动单端口或双端口(18/24位)LVDS面板。CS5211的LVDS输出可以配置为支持高达1920x1200分辨率,刷新率为60赫兹。此外,CS5211还具有背光逆变器控制、亮度调节、图像抖动算法和EMI抑制机制等增强显示功能,有利于系统制造商。CS5211特性支持18位单端口、18位双端口、24位单端口和24位双端口LVDS输出支持L
    Mr_李13699759787 2023-09-28 16:52 179浏览
  • 第二十一步 通关失败 全宇宙瞬间毁灭 通关成功就多亮一颗星 照亮地球  ,大家抬头看看 有多少盏星是恐龙点亮的?有哪些是猴子点亮的?有哪些是人类点亮的?哪些是机器人点亮的?第二十二步 新人类和机器人合体,会点亮更多的星星,在规定时间不交作业,宇宙老师会地震欧!总结:站乱会丢失地球能量,会被扣分,接着就是瘟疫,冥界能成为生灵的人是有限的,能吃的生灵的数量级也屈指可数,不要战争了,看看诸葛亮的将星是不是灭了?那周瑜的将星也灭了,一将功成万骨枯,那么多少星星灭了?点亮主星会带亮群星,祝我好运
    丙丁先生 2023-09-29 08:47 90浏览
  • 2SJ168规格书2SJ168参数: Pchannel,-60V,-0.5A,RDS(ON),3000mΩ@10V,3680mΩ@4.5V,20Vgs(±V);-1.87Vth(V);SOT232SJ168是一款P沟道MOSFET产品,采用SOT23-3封装。其特性包括额定电压为-60V,额定电流为-0.5A,RDS(ON)参数为3000mΩ(在10V下)和3680mΩ(在4.5V下),以及20Vgs(±V)的电压限制和-1.87Vth的阈值电压。2SJ168适用于多个应用领域。在电源管理、功率
    VBsemi 2023-09-28 17:50 74浏览
  • 这款 Pi 5从英国树莓派总部跨洋而来,作为树莓派的官方代理商,上海晶珩EDATEC荣幸地在首发时刻,率先揭开了 Pi 5 的神秘面纱:Raspberry Pi 5:瞩目新生!超越了 Raspberry Pi 4 的巅峰,这是 Raspberry Pi 系列计算机的最新力作。新一代 CPU 性能提升 2-3 倍,GPU 大幅升级,摄像头、显示屏和 USB 接口都得到了全面改进。而这一次的接口革新得益于 Raspberry Pi 自家研发的 RP1 I/O 控制芯片,这是首次在旗舰产品上采用 Ra
    树莓派开发者 2023-09-28 17:41 66浏览
  • 随着人口老龄化的趋势日益明显,家庭护理在智慧养老中扮演着重要的角色。为了满足家庭护理的需求,我们推出了智康护家庭护理方案,利用智慧技术提供全方位的、定制化的家庭护理服务。 以下是智康护家庭护理方案的重点内容: 1. 健康监测与管理:通过智能设备和传感器,实时监测老人的健康状况,包括心率、血压、血氧等重要指标。同时,系统可以收集老人的运动、饮食等数据,进行健康评估和管理。通过这些数据,家属和护理人员可以及时了解老人的健康状况,采取相应的护理措施。 2. 安全监测与防护:系统通过智能安防设
    新导智能 2023-09-28 11:13 170浏览
  • 交换机PCB其实也就是多层板,今天捷多邦小编跟大家聊聊交换机pcb的相关内容吧~ PCB线路板是一种用于支持和连接电子组件的基础平台。交换机的PCB通常由多层设计,在其上布置了各种电子元件,并通过导线、铜线等进行连接。要设计一个交换机的PCB,捷多邦认为需要考虑以下关键方面:1. 组件布局:根据交换机的功能和尺寸要求,确定各个电子元件的位置和排列方式,以最优化性能和散热效果。2. 连接和信号传输:通过导线、铜线或其他连接方式,将各个组件之间的信号线连接起来,确保数据传输的稳定性和速度。
    捷多邦 2023-09-28 11:11 140浏览
  • 您可以在LVGL官方网站上找到LVGL的Win32模拟器下载链接。在网站的主页或下载页面中,您可以找到“下载”或“软件下载”等选项,然后选择Win32模拟器的版本进行下载。在下载页面中,您需要选择适合您电脑系统的Win32模拟器版本,并按照网站上的指示进行下载和安装。通常,下载的文件是一个压缩包,您需要解压缩并按照其中的说明进行安装。请注意,Win32模拟器只是LVGL的一个组件,用于在电脑上仿真LVGL,以便您可以在开发前期专注于LVGL逻辑层面的开发,而不是实际硬件的测试。因此,使用Win3
    丙丁先生 2023-09-29 07:53 74浏览
  • 设备的唯一编号或者设备的无线MAC地址可以通过不同的方法获取。对于无线MAC地址,可以在许多操作系统中通过特定的命令获取。例如在Linux或macOS中,可以在终端中输入以下命令:bash复制代码ifconfig或者bash复制代码ipconfig/all在Windows中,可以进入命令提示符然后输入:bash复制代码ipconfig /all在上述命令的输出中,可以找到对应无线网卡的物理地址(MAC 地址)。如果你使用的是lvgl,你可以在lvgl的回调函数中获取到硬件的信息,比如无线MAC地
    丙丁先生 2023-09-29 07:57 77浏览
  • ESP-IOT是指Espressif Systems的物联网解决方案。它基于ESP8266和ESP32这两款低功耗、高性能的WiFi芯片,为物联网应用提供了完整的硬件和软件解决方案。ESP-IOT具有以下特点:低功耗:ESP-IOT设备在运行时可以保持低功耗状态,从而长时间运行而不需要频繁更换电池。高速WiFi连接:ESP-IOT设备支持高速WiFi连接,可以快速传输数据,适用于各种需要高速传输的应用场景。完整的开发环境:Espressif Systems提供了完整的开发环境和工具链,可以方便地
    丙丁先生 2023-09-29 07:41 52浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦