应用|光储逆变器市场碳化硅持续推进应用

原创 碳化硅芯观察 2023-08-16 19:47

点击蓝字 关注我们


1.市场热点 

近日,首航新能源发布消息称,公司与印度Velan Infra公司签署了100MW光伏电站逆变器供货协议,将为其在泰米尔纳德邦建设的地面电站项目提供SOFAR 255KTL-HV组串式光伏逆变器。

该项目预计将于2023年11月完成调试,全容量并网后将进一步提升当地清洁能源的使用比例,助力印度加速能源低碳转型进程。

Velan Infra董事长兼总经理G. Shanmugavel先生表示,“首航组串式逆变器的高效率,易于安装和维护的设计,以及首航完善的本地技术支持和全球品牌效应,是我们选择首航作为该项目逆变器供应商的重要原因。”
泰米尔纳德邦100MW发电项目是首航持续深耕印度市场的又一成绩,该项目全部采用了首航255KTL-HV组串式光伏逆变器,具有高效发电、节省投资、安全可靠、智能友好等优势。逆变器采用12路MPPT设计,最大效率可达99.02%;

首航新能源成立于2013年,核心产品涵盖光伏逆变器、储能逆变器、储能电池、集中式储能和智慧能源管理系统。是国内较早进行储能逆变器研发和“光储一体化”解决方案探索的企业之一。公司从2015年开始布局储能业务,分别在2016 年和2020年推出储能逆变器和储能电池产品,并在2022年推出了全新光储一体机SOFAR PowerAll,产品竞争力和市场占有率持续提升。

2.碳化硅应用持续加大需求

就在今年7月底,在2023首航新能源全球供应商大会上,基本半导体获由首航新能源颁发的“最佳竞争力奖”荣誉。
据基本半导体透露,自2021年展开密切合作以来,基本半导体已为首航新能源稳定交付数百万只碳化硅器件,广泛应用于首航光伏逆变器、储能逆变器等系列产品中,持续守护其电力系统长期稳定运行。
此次首航将奖杯颁发给基本半导体,除了认可基本半导体优质的产品质量、稳定的供货实力和良好的售后服务,也侧面说明了碳化硅在光储逆变器市场应用中的占比正在逐步上升,重要程度愈渐增长!

光伏逆变器在光伏系统中的应用主要作用是将光伏面板产生的直流电转化为交流电以用于电网,是太阳能光伏发电系统的核心部件。光伏逆变器的转化效率,直接影响整个光伏系统的发电效率。

而宽禁带半导体的长处正是更高的能源转化效率,其性能优势与光伏逆变器的迭代需求有着较高的契合度。华为发布的智能光伏十大趋势显示,光伏电站向大功率、高可靠性发展已成为趋势。以光伏逆变器为例,直流电压已经由1100V提升到1500V。通过碳化硅、氮化镓等新材料的应用,以及将数字技术与电力电子技术、热管理技术等充分结合,预计未来5年逆变器的功率密度将再提升50%。

基于碳化硅的光伏逆变系统能够在效率、体积和重量上做得更好。
宽禁带材料的优异特性允许基于其制造的半导体器件在高频高温高压下工作,高频意味着更小的电感体积和高频条件下仍能接受的损耗,高温意味着更好的散热能力和更加紧凑的系统布局,高压则代表着更高的母线电压,将更大的传输功率或更小的由传输电流带来的线路损耗变为可能。
基本半导体工业业务部总监杨同礼也曾在接受采访时表示,随着太阳能电池板的尺寸和功率密度逐步增加,传统的硅基器件已不能满足光伏逆变器MPPT(最大功率点跟踪)电路在效率和发热方面的需求,各方面性能更优越的碳化硅功率器件上场应用成为必然趋势。“相对硅器件而言,碳化硅功率器件能为光伏逆变器带来更高的转换效率、更低的能量损耗,从而有效缩小系统体积、增加功率密度、延长器件使用寿命、降低生产成本。

3.全球新能源市场保持快速增长,光储逆变器市场增长确定性高

8月7日晚间,国内光伏逆变器龙头企业阳光电源发布上半年业绩预告,公司预计上半年公司实现营收260亿元至300亿元,同比增长112%至144%,实现净利润40亿元至45亿元,同比增长344%至400%。值得一提的是,2022年全年公司实现归母净利润35.93亿元,今年上半年盈利已超去年全年。

实际上,不仅仅是阳光电源业绩暴增,另外两家国内逆变器巨头——上能电气与德业股份上半年也不约而同实现业绩高增长。
根据上能电气7月20日发布的2023年半年报,该公司上半年实现营收21.77亿元,同比增长416.58%;归母净利润1.35亿元,同比增长488.54%;扣非归母净利润1.29亿元,同比增长594.43%。
德业股份7月披露的半年度业绩预告也展现了上半年的业绩高增长,据公告显示,德业股份上半年预计实现归母净利润为13亿元至13.8亿元,同比增加188.58%到206.34%;扣非归母净利润则同比增加224.46%到242.67%。
从以上几家行业龙头的上半年业绩看,都表现不错,而行业整体发展势头也是良好,逆变器市场规模将迎来一波大增长已是共识。
首先,换代周期近在眼前,全球逆变器需求极度旺盛。逆变器的平均寿命为10-15年,2010年装机的逆变器已经逐步进入换代倒计时,据有关估计2022年全球光伏逆变器出货量分别有望达到 243GW,市场规模分别有望达到433亿元,2025 年全球逆变器市场空间有望达到505亿元。
其次,受益于新增装机容量持续增长,海外逆变器需求不断提升,中国龙头企业的市场地位也逐日提高。全球逆变器出货量中国占比超过65%,华为、阳光稳居前两位,在除美国以外的细分市场中,华为的逆变器出货量均排名第一,而在2019年上能电气的海外收入则一度暴增12倍。
第三,就国内市场而言,“新能源+储能”规模化发展已成趋势。无论是政策还是实际需求,都会让逆变器企业有广阔的施展空间,光伏逆变器板块过去一年势如破竹。
写在最后
下游应用市场不断向好,上半年也可以看到国产各家企业碳化硅产品在光储市场应用中推进速度加快,但从碳化硅器件企业的披露的实际营收方面看,碳化硅企业目前利润仍较为微薄或出现亏损。根据调研,在光伏MPPT电路中广泛应用的1200V SiC二极管(20A、30A)等产品价格跌幅严重,国产企业报价多数已不足0.5元/A,市场同质产品竞争十分严重。
基本半导体销售总监杨同礼先生在接受采访时表示:“光伏行业竞争激烈,客户不断追求性价比,非常考验碳化硅企业的综合竞争力。”希望国内企业可以跟随逆变器换代出海的大浪潮,加快提升产品竞争力,为双碳目标的早日实现助力!
部分信息来源:中国电子报
*免责声明:本文由作者原创。文章内容系作者个人观点,碳化硅芯观察转载仅为了传达观点,仅代表碳化硅芯观察对该观点赞同或支持,如果有任何异议,欢迎联系碳化硅芯观察。

评论 (0)
  • 风力发电机组机结构与原理-2018年-赵万清
    风力发电机组机结构与原理,中国电力出版社,PDF版本。
  • 16、谷景电子贴片电感在智能电梯领域应用取得新进展
    16、谷景电子贴片电感在智能电梯领域应用取得新进展
  • 首个基于Transformer的分割检测+视觉大模型视频课程(23年新课+源码+课件)
    自动驾驶是高安全型应用,需要高性能和高可靠的深度学习模型,Vision Transformer是理想的选摔。现在主流的自动驾驶感知算法基本都使用了Vision Transformer相关技术,比如分割、2D/3D检测,以及最近大火的大模型 (如SAM),Vision Transformer在自动驾驶领域的落地方面遍地开花。5一方面,在自动驾驶或图像处理相关算法岗位的面试题中,Vision Transformer是必考题,需要对其理论知识有深入理解,并且在项目中真实的使用过相关技术。

    Transformer出自于Google于2017年发表的论文《Attention is all you need》,最开始是用于机器翻译,并且取得了非常好的效果。但是自提出以来,Transformer不仅仅在NLP领域大放异彩,并且在CV、RS等领域也取得了非常不错的表现。尤其是2020年,绝对称得上是Transformer的元年,比如在CV领域,基于Transformer的模型横扫各大榜单,完爆基于CNN的模型。为什么Transformer模型表现如此优异?它的原理是什么?它成功的关键又包含哪些?本文将简要地回答一下这些问题。

    我们知道Transformer模型最初是用于机器翻译的,机器翻译应用的输入是某种语言的一个句子,输出是另外一种语言的句子。
    var i *int = nil
    fmt.Println("i.size:", unsafe.Sizeof(i)) //8

    var i8 *int8 = nil
    fmt.Println("i8.size:", unsafe.Sizeof(i8)) //8

    var s *string = nil
    fmt.Println("s.size:", unsafe.Sizeof(s)) //8

    var ps *struct{} = nil
    fmt.Println("ps.size:", unsafe.Sizeof(ps)) //8

    var si []int = nil
    var si1 []int = nil
    fmt.Println("si.size:", unsafe.Sizeof(si)) //24

    var ii interface{} = nil
    fmt.Println("ii.size:", unsafe.Sizeof(ii)) //16
    我们以生成我,爱,机器,学习,翻译成<bos>,i,love,machine,learning,<eos>这个例子做生成过程来解释。
    训练:

    把“我/爱/机器/学习”embedding后输入到encoder里去,最后一层的encoder最终输出的outputs [10, 512](假设我们采用的embedding长度为512,而且batch size = 1),此outputs 乘以新的参数矩阵,可以作为decoder里每一层用到的K和V;
    将<bos>作为decoder的初始输入,将decoder的最大概率输出词向量A1和‘i’做cross entropy(交叉熵)计算error。
    将<bos>,“i” 作为decoder的输入,将decoder的最大概率输出词 A2 和‘love’做cross entropy计算error。
    将<bos>,“i”,“love” 作为decoder的输入,将decoder的最大概率输出词A3和’machine’ 做cross entropy计算error。
    将<bos>,“i”,"love ",“machine” 作为decoder的输入,将decoder最大概率输出词A4和‘learning’做cross entropy计算error。
    将<bos>,“i”,"love ",“machine”,“learning” 作为decoder的输入,将decoder最大概率输出词A5和终止符做cross entropy计算error。
    那么并行的时候是怎么做的呢,我们会有一个mask矩阵在这叫seq mask,因为他起到的作用是在decoder编码我们的target seq的时候对每一个词的生成遮盖它之后的词的信息。
    func main() {
    s := []string{"a", "b", "c"}
    fmt.Println("s:origin", s)
    changes1(s)
    fmt.Println("s:f1", s)

    changes2(s)
    fmt.Println("s:f2", s)

    changes3(s)
    fmt.Println("s:f3", s)
    }

    func changes1(s []string) {
    var tmp = []string{"x", "y", "z"}
    s = tmp
    }

    func changes2(s []string) {
    // item只是一个副本,不能改变s中元素的值
    for i, item := range s {
    item = "d"
    fmt.Printf("item=%s;s[%d]=%s", item, i, s[i])
    }
    }

    func changes3(s []string) {
    for i := range s {
    s[i] = "d"
    }
    }

    首先我们需要为每个输入向量(也就是词向量)创建3个向量,分别叫做Query、Key、Value。那么如何创建呢?我们可以对输入词向量分别乘上3个矩阵来得到Q、K、V向量,这3个矩阵的参数在训练的过程是可以训练的。注意Q、K、V向量的维度是一样的,但是它们的维度可以比输入词向量小一点,比如设置成64,其实这步也不是必要的,这样设置主要是为了与后面的Mulit-head注意力机制保持一致(当使用8头注意力时,单头所处理的词向量维度为512/8=64,此时Q、K、V向量与输入词向量就一致了)。我们假设输入序列为英文的"Thinking Machines"
    想要深度理解Attention机制,就需要了解一下它产生的背景、在哪类问题下产生,以及最初是为了解决什么问题而产生。

    首先回顾一下机器翻译领域的模型演进历史:

    机器翻译是从RNN开始跨入神经网络机器翻译时代的,几个比较重要的阶段分别是: Simple RNN, Contextualize RNN,Contextualized RNN with attention, Transformer(2017),下面来一一介绍。

    「Simple RNN」 :这个encoder-decoder模型结构中,encoder将整个源端序列(不论长度)压缩成一个向量(encoder output),源端信息和decoder之间唯一的联系只是: encoder output会作为decoder的initial states的输入。这样带来一个显而易见的问题就是,随着decoder长度的增加,encoder output的信息会衰减。
    func main(){
    var c = make(chan int)
    fmt.Printf("c.pointer=%p\n", c) //c.pointer=0xc000022180
    go func() {
    c <- 1
    addChannel(c)
    close(c)
    }()

    for item := range c {
    //item: 1
    //item: 2
    fmt.Println("item:", item)
    }
    }

    func addChannel(done chan int) {
    done <- 2
    fmt.Printf("done.pointer=%p\n", done) //done.pointer=0xc000022180
    }
    在测试模型的时候,Test:decoder没有label,采用自回归一个词一个词的输出,要翻译的中文正常从encoder并行输入(和训练的时候一样)得到每个单词的embedding,然后decoder第一次先输入bos再此表中的id,得到翻译的第一个单词,然后自回归,如此循环直到预测达到eos停止标记
    type visit struct {
    a1  unsafe.Pointer
    a2  unsafe.Pointer
    typ Type
    }

    func deepValueEqual(v1, v2 Value, visited map[visit]bool) bool {
    if !v1.IsValid() || !v2.IsValid() {
    return v1.IsValid() == v2.IsValid()
    }
    if v1.Type() != v2.Type() {
    return false
    }

    // We want to avoid putting more in the visited map than we need to.
    // For any possible reference cycle that might be encountered,
    // hard(v1, v2) needs to return true for at least one of the types in the cycle,
    // and it's safe and valid to get Value's internal pointer.
    hard := func(v1, v2 Value) bool {
    switch v1.Kind() {
    case Pointer:
    if v1.typ.ptrdata == 0 {
    // not-in-heap pointers can't be cyclic.
    // At least, all of our current uses of runtime/internal/sys.NotInHeap
    // have that property. The runtime ones aren't cyclic (and we don't use
    // DeepEqual on them anyway), and the cgo-generated ones are
    // all empty structs.
    return false
    }
    fallthrough
    case Map, Slice, Interface:
    // Nil pointers cannot be cyclic. Avoid putting them in the visited map.
    return !v1.IsNil() && !v2.IsNil()
    }
    return false
    }

    if hard(v1, v2) {
    // For a Pointer or Map value, we need to check flagIndir,
    // which we do by calling the pointer method.
    // For Slice or Interface, flagIndir is always set,
    // and using v.ptr suffices.
    ptrval := func(v Value) unsafe.Pointer {
    switch v.Kind() {
    case Pointer, Map:
    return v.pointer()
    default:
    return v.ptr
    }
    }
    addr1 := ptrval(v1)
    addr2 := ptrval(v2)
    if uintptr(addr1) > uintptr(addr2) {
    // Canonicalize order to reduce number of entries in visited.
    // Assumes non-moving garbage collector.
    addr1, addr2 = addr2, addr1
    }

    // Short circuit if references are already seen.
    typ := v1.Type()
    v := visit{addr1, addr2, typ}
    if visited[v] {
    return true
    }

    // Remember for later.
    visited[v] = true
    }

    switch v1.Kind() {
    case Array:
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Slice:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    // Special case for []byte, which is common.
    if v1.Type().Elem().Kind() == Uint8 {
    return bytealg.Equal(v1.Bytes(), v2.Bytes())
    }
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Interface:
    if v1.IsNil() || v2.IsNil() {
    return v1.IsNil() == v2.IsNil()
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Pointer:
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Struct:
    for i, n := 0, v1.NumField(); i < n; i++ {
    if !deepValueEqual(v1.Field(i), v2.Field(i), visited) {
    return false
    }
    }
    return true
    case Map:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    for _, k := range v1.MapKeys() {
    val1 := v1.MapIndex(k)
    val2 := v2.MapIndex(k)
    if !val1.IsValid() || !val2.IsValid() || !deepValueEqual(val1, val2, visited) {
    return false
    }
    }
    return true
    case Func:
    if v1.IsNil() && v2.IsNil() {
    return true
    }
    // Can't do better than this:
    return false
    case Int, Int8, Int16, Int32, Int64:
    return v1.Int() == v2.Int()
    case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
    return v1.Uint() == v2.Uint()
    case String:
    return v1.String() == v2.String()
    case Bool:
    return v1.Bool() == v2.Bool()
    case Float32, Float64:
    return v1.Float() == v2.Float()
    case Complex64, Complex128:
    return v1.Complex() == v2.Complex()
    default:
    // Normal equality suffices
    return valueInterface(v1, false) == valueInterface(v2, false)
    }
    }
    这便是encoder的整体计算流程图了,Transformer模型中堆叠了多个这样的encoder,无非就是输出连接输入罢了,常规操作。
    最后再附上一个Transformer的代码实现,读者有兴趣可以跟着自己复现一下Transformer模型的代码。
       package main

       import (
           "log"
           "sync"
       )

       func init() {
           log.SetFlags(log.Lshortfile)
       }
       func main() {
           lock := sync.Mutex{}

           //Go 1.18 新增,是一种非阻塞模式的取锁操作。当调用 TryLock() 时,
           //该函数仅简单地返回 true 或者 false,代表是否加锁成功
           //在某些情况下,如果我们希望在获取锁失败时,并不想停止执行,
           //而是可以进入其他的逻辑就可以使用TryLock()
           log.Println("TryLock:", lock.TryLock())
           //已经通过TryLock()加锁,不能再次加锁
           lock.Lock()

       }

  • 15、贴片叠层电感应用测试中不良率高的原因
    15、贴片叠层电感应用测试中不良率高的原因
  • 13、如何解决直插差模电感的异响问题
    13、如何解决直插差模电感的异响问题
  • 特斯拉电路图.rar
    特斯拉电路图,欢迎大家下载
  • 注释EN55014-1
    注释EN55014-1
  • 基本_碳化硅功率器件_选型手册_2023Q3.pdf
    基本_碳化硅功率器件_选型手册_2023Q3.pdf
  • ECG前置电路设计
    TI出的一个经验文档,讲的很不错
  • 基于单片机的工业级液晶图形显示控制芯片RA8889ML3N-Datasheet
    TFT-LCD液晶显示控制芯片RA8889ML3N的优势:
    低功耗及功能强大:这款芯片最大支持分辨率为1366x2048,内置128Mb SDRAM,可为内容显示进行快速刷新,同时内置视频解码单元,支持JPEG/AVI硬解码播放,为普通单片机实现视频播放提供可能。
    支持多种接口:RA8889ML3N支持MCU端的8080/6800 8/16-bit 非同步并列接口和3/4线SPI及IIC串列接口,以及最大驱动1366x800分辨率的TFT LCD。
    显示功能强大:RA8889ML3N提供多段的显示记忆体缓冲区段,支持多图层功能,并提供画中画(PIP)、支持透明度控制与显示旋转镜像等显示功能。

    应用范围广:这款芯片广泛应用于自动化控制设备、电力监测控制、测量检测仪器仪表、电教设备、智能家电、医疗检测设备、车用仪表及工控自动化等领域。

    技术咨询与交流:QQ2851189731, 微信13760238805

  • 背景   随着汽车行业的不断迭代发展,市场及消费者对汽车提出了更高的要求,智能网联、自动驾驶等新技术的应用推动整车厂对车载芯片、汽车软件等方面投入了更多的精力,SOA(面向服务的架构)逐渐成为大多整车厂顺应市场趋势和技术趋势的首选。SOA架构使服务间的通讯变得更加简单,ECU更新、软件升级等变得更加灵活,使系统的健壮性和拓展性获得了大幅提高。但是在SOA架构开发阶段,由于市面上的IDL(接口描述语言)众多,例如FIDL、Protobuf、vCDL、ARXML、OMG IDL、CAN
    北汇信息 2023-12-06 11:41 73浏览
  • ​无论当下看不看机会,把握行情肯定是没错。 通过岗位数量,岗位要求(如对学历,技术点的要求)来了解行情是有效途径之一。 可以找我了解更多全国岗位。 【嵌入式软件工程师】 上海,风电行业国资企业,对学历有要求。 岗位职责: 1. 负责产品全周期研发,包括市场调研、客户需求技术转化、产品设计、产品制造、产品安装调试、产品测试验证和产品认证; 2. 负责产品失效根因分析,提供有效解决方案; 3. 负责组织供应商选择和产品质量管控; 4. 组织编制产品开发技
    落子无悔 2023-12-06 13:27 63浏览
  • 光耦合器是一种在现代科技中发挥关键作用的设备,其应用领域横跨通信、医疗、工业等多个行业。光耦合器通过巧妙地将光电子器件结合起来,实现了光与电的高效转换和传输,为光电子领域的发展提供了强大的支持。光耦合器是什么光耦合器是一种用于隔离、耦合和传输光信号的器件。其主要功能是将一个光学系统的光信号转换成电信号,或者将电信号转换为光信号,以实现光与电之间的高效转换。在各类光电子设备中,光耦合器起到了桥梁的作用,实现了不同部分之间的无缝衔接。光耦合器的原理及结构光耦合器的基本原理是通过光电二极管和光电晶体管
    克里雅半导体科技 2023-12-06 10:58 31浏览
  • #这段代码是一个基于C语言的嵌入式程序,用于在HPMicro平台上运行。它的主要功能是初始化一个LED灯,并使其以一定的时间间隔闪烁。#以下是对代码的解析:#```c#include #include "board.h"#include "hpm_debug_console.h"#define LED_FLASH_PERIOD_IN_MS 300int main(void){    int u;    board_init(); // 初始化板子 
    丙丁先生 2023-12-06 14:22 105浏览
  • 摘要:根据CINNO Research产业统计数据,Q3'23国内智能手机屏下指纹识别占比创历史新高达45%,而侧边指纹识别占比较去年同期下降12%,后置指纹识别占比下降至1%,而前置指纹已淡出国内智能手机指纹识别市场。根据CINNO Research产业统计数据,受华为、荣耀热门机型销售的影响,Q3'23国内智能手机指纹识别搭载率上升至84%。图示:中国市场智能手机指纹识别技术别占比趋势来源: CINNO Research月度中国市场智能手机指纹识别应用趋势报告2023年第三季度,国内OLED
    CINNOResearch 2023-12-06 12:53 91浏览
  • 导语:CINNO Research统计数据表明,Q3'23全球半导体设备厂商市场规模前十大公司合计超250亿美元,同比下降9%,环比增长3%。CINNO Research统计数据表明,Q3'23全球半导体设备厂商市场规模Top10营收合计超250亿美元,同比下降9%,环比增长3%。Q3'23全球半导体设备厂商市场规模排名Top10与1H'23的Top10设备商相比,日立高新(Hitachi High-Tech)排名跌出Top10,泰瑞达(Teradyne)排名回归第十。荷兰公司阿斯麦(ASML)
    CINNOResearch 2023-12-06 14:04 105浏览
  • 近日,英国伦敦的可持续倡议(SMI)公布了2023年《地球宪章》徽章获奖名单。在这个名单中,全球共17家企业入选,中国企业仅占两席。最值得注目的是,海尔智家作为唯一获奖的中国家电企业,荣登榜单。 据了解,《地球宪章》徽章由现任英国国王查尔斯三世于2021年发起,旨在表彰对全球环境的可持续发展做出突出贡献的企业,鼓励企业将自然、人类和地球置于核心位置,通过创新和可持续的商业模式,共同应对全球气候挑战。获奖企业由来自环境、商业、政治和慈善界的全球专家小组经过严苛的评选选出。 海尔
    锦缎研究院 2023-12-06 12:41 53浏览
  •     今天看到一个麦肯锡的统计数据,2021年中国出口的电子产品占世界34%。越来越多的PCB组件在中国造出来,然后送往全世界。作为电子工程师,除了增加修养,不断实现良好的设计,也要减少电子垃圾,对国际上的主要环保要求有所了解。    ROHS  Restriction of Hazardous Substances  有毒物质限制        这个标准针对 6 类电子产品中常见的的有毒物质,
    电子知识打边炉 2023-12-06 22:21 107浏览
  • 近日,在传感器专家网的压力传感器专业交流群组中,有相关专家交流了目前我国压力传感器的一些情况。交流中指出,目前国内已有一些企业在做MEMS压力传感器芯片,在该领域国内相关企业总体来说技术差不多,精度等关键技术指标彼此间相差不大,但与国外压力传感器芯片巨头相比,精度等指标却有较大差距。传感器专家网https://www.sensorexpert.com.cn专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器
    传感器专家网 2023-12-06 11:03 52浏览
  • 来源:虹科汽车电子 虹科技术丨BabyLIN产品如何轻松搞定K线协议实现? 原文链接:https://mp.weixin.qq.com/s/LR7VHFQajjyw6s6bVDJmsg 欢迎关注虹科,为您提供最新资讯!   导读 为了实现K线通信,SDF-V3在协议部分中定义了新的协议类型KLine Raw。所有能够运行SDF-V3文件(LinWorks版本在V.2.29.4以上)并使用最新固件(固件版本在V.6.18以上)的BabyLIN设备都可以执行KLine Raw
    虹科电子科技 2023-12-06 14:42 108浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦