时序约束是如何影响数字系统的,具体如何做时序分析?

21ic电子网 2020-08-12 00:00

在进行数字电路系统的设计时,时序是否能够满足要求直接影响着电路的功能和性能。本文首先讲解了时序分析中重要的概念,并将这些概念同数字系统的性能联系起来,最后结合FPGA的设计指出时序约束的内容和时序约束中的注意事项。


一、时序分析中的重要概念

 

在数字系统中有两个非常重要的概念:建立时间和保持时间,其示意图如图1所示。一个数字系统能否正常工作跟这两个概念密切相关。只有建立时间和保持时间都同时得到满足时,数字系统才能可靠的、正常的工作。



当寄存器的建立时间或保持时间不能得到满足时,寄存器有可能会进入亚稳态( Metastable)。亚稳态是一种电压的中间态,假设寄存器的输出电压大于3V判决为逻辑1,小于0.3V判决为逻辑0,那么电压处于0.3V到3V之间并且能够短时间稳定的状态就是亚稳态。寄存器在进入亚稳态一段时间后会回复到正常的状态,但是有可能回到逻辑1的状态,也有可能回到逻辑0的状态。这种不确定性就有可能引起数字系统的错误。


建立时间和保持时间是一个寄存器的固有属性,是由其内部的结构、工艺等因素决定的,因而在进行数字系统设计时只能通过改变电路结构使其满足建立时间和保持时间的要求,而不能改变建立时间和保持时间的值。


二、建立时间和保持时间对电路性能的影响

首先来看一个典型的同步数字系统的示意图,见图2。



在图2中,FF1和FF2代表两个寄存器,在两个寄存器中间存在组合逻辑。同步的数字系统正是由许多的寄存器,以及寄存器中间的组合逻辑构成的(也包括寄存器间的直接连接)。

显然,如果要数字系统正常工作,每个寄存器的建立时间和保持时间都必须得到满足。假设时钟信号ck到达所有寄存器的时间相同,图3画出了这两个寄存器间的时序关系。



从图中可以看到,如果要FF2的建立时间和保持时间得到满足,必须要满足以下公式:



其中Ts建立时间,Th为保持时间,Tclock为时钟周期,Tclk2q为寄存器的传输延时(从时钟有效沿到输出的时间),Tdelay为两个寄存器之间的组合逻辑延时。


从公式(1)中可以看出,建立时间是否能得到满足取决于3个参数:时钟周期、寄存器传输延时以及组合逻辑延时。其中寄存器的输出延时是寄存器的固有属性,不可更改,因而在设计中只能靠调节时钟周期和组合逻辑的延时来满足寄存器对于建立时间的要求。


从公式(2)中可以看出,保持时间能否得到满足取决于2个参数:寄存器的传输延时和组合逻辑的延时,设计者能做的仅仅是调节组合逻辑的延时。

图3仅仅是两个寄存器之间的时序关系,在一个数字系统中往往包含有成千上万个寄存器,任意两个相邻的寄存器之间的时序关系都必须满足公式(1)和公式(2)的约束,只有如此数字系统才能正常工作。在数字系统可以正常工作的前提下,组合逻辑的延时就决定了数字系统能够工作的时钟频率的上限。组合逻辑的延时越短,系统的工作频率的上限就越高,这里的组合逻辑的延时指的是任意两个相邻的寄存器之间的最长的组合逻辑延时,也就是关键路径的延时。当然,组合逻辑的延时也不能无限短,必须要满足公式(2) 的要求。


三、在FPGA中对时序进行约束

在FPGA设计中,时序约束占有重要的地位。时序约束主要有两方面的作用:第一,EDA工具会根据设计者的约束努力尝试布局布线,尽量满足设计者提出的时序方面的要求;第二,在EDA工具经过努力仍不能满足设计者提出的时序要求时会给出警告信息,用以提示设计者。


在对设计进行约束时要做到恰到好处,太松或者太紧的约束都不能使电路达到最好的状态。约束过松自不必提,约束过紧之后EDA软件经过努力尝试仍不能达到要求,但其不会取最接近目标的一次,而是将最后一次作为结果,可能导致电路性能更加恶化。

当今的FPGA设计中时序约束主要包括3种:一是寄存器到寄存器的约束,二是引脚到寄存器的约束,三是寄存器到引脚的约束。

寄存器到寄存器的约束是对时钟周期的约束,对应于公式(1)中的Tclk2q+Tdelay+Ts,通常来讲设计者应该对其所设计的系统需要多快的时钟频率有所了解,只要结合需求给出时钟周期的约束即可。

在约束时钟周期时,实际上保证的是两个寄存器中后一级的寄存器。第一级寄存器连接在FPGA的外部引脚上,那么第一级寄存器能否满足其建立时间和保持时间的约束就取决于引脚上时钟和数据的关系以及各自到达寄存器的延时。假设引脚时钟和内部时钟是同步的(频率和相位都同步),那么数据引脚和时钟引脚的时序关系以及从引脚到寄存器输入端的延时共同决定了第一个寄存器的建立时间和保持时间能否得到满足,设计者可以对数据引脚到寄存器输入端的延时进行约束。

为了保证FPGA的输出信号和时钟的时序关系达到预期的效果,比如达到后一级芯片对时钟和数据时序关系的要求,设计者可以对寄存器的输出到引脚所经历的延时进行约束。


以上三种约束就可以涵盖设计中的所有寄存器。但是在某些特定的情况下,比如异步时钟域时,我们清楚地知道某些寄存器会发生建立时间或者保持时间不满足的情况,但这是不可避免的,设计者也已经对其进行了处理。在这种情况下,设计者最好告诉EDA软件忽略这些路径,否则EDA软件会努力尝试解决这些路径的时序冲突,既费时又没有效果。





21ic电子网 即时传播最新电子科技信息,汇聚业界精英精彩视点。
评论 (0)
  • 使美国在21世纪保持安全,美国防部发布最新投资战略,12项领先发展科技,两项是传感器技术!近日(3月8日),美国国防部官网公布了《2024财年投资战略》(INVESTMENT STRATEGY FOR THE OFFICE OF STRATEGIC CAPITAL),确定了战略资本办公室(OSC)重点关注的优先关键组件技术行业投资战略,这是美国最新重量级投资计划。2022 年 12 月,美国国防部长劳埃德·奥斯汀三世 (Lloyd J. Austin III) 启动了战略资本办公室 (OSC),
    传感器专家网 2024-03-18 19:31 98浏览
  • 在设计防止AI大模型被黑客病毒入侵时,需要考虑到复杂的加密和解密算法以及模型的实现细节,首先需要了解模型的结构和实现细节。以下是我使用Python和TensorFlow 2.x实现深度学习模型推理的模型的结构和实现细节:首先,确保安装了TensorFlow 2.x。可以使用以下命令安装TensorFlow:pip install tensorflow 然后,编写一个简单的深度学习模型并实现推理代码,我现在开始编写一段教电脑如何“深度思考”的代码。想象你正在训练一只名叫tf.keras的小猴子玩多
    还没吃饭中 2024-03-19 12:18 53浏览
  • 导读:相信使用过PCAN工具的朋友都知道虹科PCAN-View这款免费软件,它具有直观的用户界面,可以实时监测和分析CAN总线上的数据帧,并提供过滤、发送和报文记录。但你知道吗?它其实不只是简单收发报文,虹科PCAN-View还能自动检测和报告CAN总线上的错误帧,帮助用户快速发现和解决通信问题。无论是在汽车、工业自动化还是嵌入式系统领域, 虹科PCAN-View都是一个功能丰富且广泛应用的工具,为用户优化CAN总线系统的性能和提升通信的可靠性提供了极大的帮助。本文带你一起走进这些功能细节,深入
    虹科汽车智能互联 2024-03-18 13:54 140浏览
  • 总结:科普量子计算机的水书。至少第一章是在科普量子计算机。唯一有点用的就是我上面这一张照片里面的笔记。上面说了为什么量子计算机会比传统计算机运算速度快的原因:因为传统计算机一位只能有一个数字,但是量子计算机可以0和1叠加起来显示。这样就造成了传统计算机需要运行很多遍的东西,而量子计算机不管多少多难都只用计算一次。(前提是量子比特位够长)---------------------------------------------------------------------------------
    youyeye 2024-03-17 17:04 157浏览
  • 电脑上的很多东西都是赚钱的手段,知道了就轻松自在。如果你在Win10、11等安装应用程序,出现:应用程序无法启动,因为应用程序的并行配置不正确。有关详细信息,请参阅应用程序事件日志,或使用命令行sxstrace.exe工具。你各种删除再安装,清理注册表,各种残留清理,各种模块开关设置、甚至重装系统,都不行,你可以考虑安装一下:通过微软网站:Microsoft visual C++ 2005Microsoft visual C++ 2008因为微软自带系统没有这两个基础程序,旧的应用程序多数要用的
    老黄姓黄 2024-03-17 15:59 193浏览
  • 导读:网关设备是确保数据流畅通信的关键。虹科PCAN系列网关凭借卓越性能和创新技术,为众多应用提供了高效稳定的解决方案。本文将深入探讨虹科PCAN系列网关内部存储空间,特别是EEPROM和SPI Flash的配置与利用,并解析如何通过C编程实现快速实时的信号存读。通过虹科PCAN-Router FD的实例,我们将展示这些存储空间如何助力网关设备在复杂环境中保持卓越性能。一、网关内部存储空间概览网关的内部存储空间经过精心设计,旨在满足快速、稳定的数据处理需求。除了常规的RAM外,虹科PCAN系列网
    虹科汽车智能互联 2024-03-18 13:56 111浏览
  • 汽车氛围灯,顾名思义,是烘托车内氛围的照明灯,是汽车内饰情感化设计的一种体现。 一般有暖色(红色等)和冷色系(蓝色、紫色等)两种,在夜晚开启后绚丽浪漫,可营造车内情调,使得旅途并不是那么的枯燥无味,让人们拥有独特的驾驶体验。关于汽车氛围灯浪涌保护上海雷卯EMC小哥分析难点有以下几个方面:1. 复杂的电气环境:汽车的电气系统较为复杂,存在各种干扰源,如点火系统、电机、电子设备等,这可能会对氛围灯的浪涌保护造成挑战。2. 电压波动:汽车运行过程中,电源电压可能会出现较大的波动,例如启动引擎或电器设备
    上海雷卯电子 2024-03-16 13:51 96浏览
  • 1. 整流桥功能介绍整流桥在电子领域中扮演着至关重要的角色,为各种电子设备和电路提供了稳定的电源。整流桥的主要作用是将交流电信号转换为直流电信号。当交流电信号通过整流桥时,它会使得只有一个方向的电流能够通过,从而实现了将交流电信号转换为单向的直流电信号。在一些手持设备需要小巧轻便的整流桥来将交流电转换为直流电。医疗器械:一些便携式医疗器械或医疗监测设备,由于需要经常携带和移动,通常采用小体积的整流桥设计。智能家居产品:如智能插座、智能灯具等,由于需要集成在家居环境中,因此需要小体积的整流桥来满足
    上海雷卯电子 2024-03-16 14:07 127浏览
  • 安装Ubuntu后,可能会影响到Windows 10的启动方式,特别是在使用双系统引导时。这可能是导致您无法通过按F8进入安全模式的原因。以下是一些可能的原因和解决方法:启动管理器更改:安装Ubuntu后,GRUB或其他启动管理器可能成为默认的启动引导程序。这些启动管理器可能不会像Windows那样响应F8键进入安全模式的指令。快速启动功能:Windows 10的“快速启动”功能可能会影响您进入安全模式的能力。当启用快速启动时,系统会跳过某些启动步骤,这可能会阻止您通过F8进入安全模式。系统文件
    丙丁先生 2024-03-19 08:54 72浏览
  • 3月14日,全球三大家电及消费电子展之一中国家电及消费电子博览会AWE 2024在上海开幕,三星、TCL、海信、长虹、联想、创维等终端厂商亮相AWE 2024,共同聚焦创新显示,并展出各自采用最新显示技术的新型产品。当新型显示技术逐渐成熟,已经完美应用在大型产品后,下一步的技术迭代需要克服的难题,产品小型化必是其一。在今年初的国际消费电子展(CES)期间,我们已经通过《行业应用丨基于光谱共焦技术的Mini-LED基座检测》这篇文章,分享过要对Mini-LED基座进行检测的原因。一般来说,对于有大
    海伯森技术 2024-03-19 15:01 63浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期推荐艾迈斯欧司朗首款支持UV-A辐射、环境光闪烁检测功能的微型环境光传感器TSL2585。TSL2585尺寸小巧,采用L2.0mm xW1.0mm xH0.35mm 6引脚OLGA超薄封装,非常适用于可穿戴设备以及手机等这类产品尺寸和厚度受到限制的应用。基于先进的干涉滤光技术,TSL2585的每一个感光像素上都精确沉积了特定光学设计的滤光膜,整体约5µm厚,由60多
    艾迈斯欧司朗 2024-03-18 18:35 117浏览
  • 来源:虹科汽车电子 虹科技术 | PCAN View功能细讲:从实时监测到错误帧分析原文链接:https://mp.weixin.qq.com/s/yOonZ5NqSCnKjURr9hNC6A欢迎关注虹科,为您提供最新资讯!#PCAN #CAN总线 #工业通讯导读相信使用过PCAN工具的朋友都知道虹科PCAN-View这款免费软件,它具有直观的用户界面,可以实时监测和分析CAN总线上的数据帧,并提供过滤、发送和报文记录。但你知道吗?它其实不只是简单收发报文,虹科PCAN-View还能自动检测和报
    虹科电子科技 2024-03-18 15:48 118浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦