AehrTestSolutions:在SiC晶圆级测试和老化测试市场持续领先

碳化硅芯观察 2023-09-13 20:04

点击蓝字 关注我们


Aehr Test Solutions,美国一家拥有独特测试解决方案的小公司,其技术用于苹果的Face ID、英特尔硅光子学,以及最目前对他们业务影响最重要的SiC(碳化硅)市场。

前不久他们发布了自己2023财年的数据,总收入增长了28%,达到创纪录的 6500 万美元,预订量达到创纪录的 7830 万美元, GAAP 利润为 1460 万美元,非 GAAP 利润为 1730 万美元,同比增长 54% 和 62%,分别超过去年。

据Aehr公司表示,公司这一创纪录的业绩很大程度上得益于跟公司的晶圆级测试和老化系统以及电动汽车和电动汽车充电基础设施中使用的碳化硅半导体接触器以及数据和电信基础设施中使用的硅光子器件的预订和收入出货量,以及即将推出的芯片到芯片光学 I/O 新应用。

碳化硅器件晶圆级测试和老化产品订单持续突破

7月,在Aehr Test Systems 2023 财年第四季度和全年财务业绩电话会议上,公司总裁兼首席执行官 Gayn Erickson 表示:我们所看到的公司的碳化硅器件晶圆级测试和老化的出现了不断增长的势头。

在第四财季期间,汽车逆变器市场因为该应用具有极高的可靠性和使用寿命要求,导致测试要求变高,成为我们 FOX 系统业务增长的主要驱动力。本季度我们新签约了一家跨国工业集团和半导体(包括功率半导体)制造商。他们预计将大幅增长碳化硅业务以满足市场需求,我们预测这将反过来推动我们的 FOX 系统和我们专有的 WaferPak 全晶圆接触器的产能增量。

我们预测,碳化硅晶圆的总需求仅针对电动汽车,包括电动汽车、车载逆变器和非车载充电器,将从 2022 年的 22 万片晶圆增长到 2030 年超过 450 万片六英寸等效晶圆,

此外,到 2030 年,工业应用、火车、能源转换和射频放大器对碳化硅的需求将带动另外 280 万片晶圆。这进一步扩大了我们的碳化硅测试和老化市场。随着这个最新客户的加入,我们今年总共增加了四个新的碳化硅客户,显着扩大了我们的客户群。这些新客户中的每一个都已经或计划使用我们的多晶圆测试和老化系统将我们的产品投入大批量生产。我们继续对我们的主要碳化硅客户的产量令人难以置信的增长感到兴奋,他们使用我们的晶圆级测试和老化系统以及 WaferPaks 来满足当前客户的产能增长,此外还赢得了许多新的设计。
6 月初,我们宣布向他们追加 1,370 万美元的 WaferPaks 后续订单。这包括当前设计能力的增加以及预计在客户资格完成后投入批量生产的几种新设计。在本季度,我们还宣布从我们的第二大碳化硅客户处订购了一批 WaferPak 全晶圆接触器,这些接触器将与之前订购的 FOX-XP 系统一起使用,用于在其生产设施中进行晶圆测试和老化。

我们认为,我们为客户提供了一种独特的低成本方法来进行扩展的老化压力测试,以消除碳化硅半导体等设备在装入封装之前的早期外在故障。这节省了整体制造成本,因为您不仅避免了丢弃封装成本,而且在将多个这些设备放入单个封装(称为多芯片模块)的情况下。这也节省了大量成本,因为当其中一个设备在老化过程中出现故障时,同一模块中的其他设备不会被丢弃。节省的成本和良率远远超过晶圆级老化的实际成本。

想象一下 48 芯片模块的老化中超过 1% 的故障率意味着什么。高功率碳化硅 MOSFET 的外在故障率可能会导致这些模块 25% 至 50% 的良率损失。无论如何,如果没有晶圆级老化,这是无法管理的。因此,晶圆级预烧实际上可以实现此类高密度多芯片模块。除了我们在碳化硅方面的发展势头外,我们还有多个潜在的新客户询问我们的系统,该系统配备了我们去年推出的新 2000 伏高压选项,用于测试和老化设备,例如碳化硅和氮化镓半导体,用于功率转换应用。

晶圆级老化产品的市场预测意义重大。Aehr公司估计,到 2027 年,仅碳化硅晶圆级老化产品的可用市场总额就将超过 4 亿美元。我们相信,根据我们所拥有的碳化硅业务水平,Aehr 有潜力占领该市场的很大一部分。

2024 财年伊始,我们的有效积压订单已接近 4000 万美元,并且我们现有和潜在客户的预测也十分强劲。我们与众多潜在新客户的合作使我们对未来几年的增长预期充满信心,包括预计明年 5 月结束的本财年收入和利润将再次创纪录,特别是在碳化硅和电动汽车需求出现积极势头的情况下继续加速。我们非常高兴地报告 2024 财年财务数据预计将出现显着增长。

详解Aehr Test Systems产品与业务

大多数行业使用封装或模块老化来消除高价值部件的infant mortality。在升高的温度/电压下进行加速压力测试可以通过测量测试期间设备性能的任何变化来帮助清除腐烂的鸡蛋。这些潜在的制造缺陷可以被消除,从而最大限度地减少客户在现场拥有产品模具的机会。这对于 IGBT 和标准硅基设备领域来说很好,因为老化时间更短,但对于SiC,由于所需老化时间的长度,成本开始飙升。这就是 Aehr Test System 的新颖方法的用武之地。他们不是创建模块级测试工具,而是制造晶圆级测试工具。


由于SiC良率低,可以使早期失效率大大降低,允许封装更少的故障设备并缩短完整的测试周期。周期时间是SiC器件生产的主要限制因素,而Aehr减少周期时间的解决方案大有益处。

美国半导体元器件制造商安森美半导体是Aehr在SiC领域的第一个标志性客户。Aehr还与英飞凌、意法半导体、罗姆半导体、Wolfspeed、三菱集团、三安集成电路、华润微电子等其他公司进行了合作。


Aehr开发的FOX-XP工具


转向晶圆级老化时,成本节省是巨大的。如果满足汽车质量要求,那么每个SiC器件制造商都可以轻而易举地转向晶圆级老化。随着汽车制造商意识到这一点,一些汽车制造商甚至要求他们的供应商实施十几个小时的超长时间老化。因此,唯一具有成本效益的方法是使用Aehr。


Aehr为这些晶圆级老化测试开发了FOX-XP工具。每个晶圆可以包含多达1000个SiC器件。FOX-XP一次可以测试9到18个晶圆。FOX-XP在腔室内执行此操作,该腔充当高度调节的极端温度环境。FOX-XP工具的成本约为250万美元。


这些工具还必须与Aehr测试系统的WaferPak接触器一起使用。WaferPak类似于探针卡,但它不仅与晶圆接口,还承载晶圆。WaferPak被认为是一种消耗品,因为它们对于每种设计都是独一无二的,并且填充一个FOX-XP的成本约为150万美元。设计通常每隔几年就会改变一次。这些设计更改提高了终端市场功率设备的效率并降低了成本。



WaferPak是未来经常性收入的关键引擎,WaferPak的收入将在几年内超过FOX-XP。

WaferPak有2048个I/O引脚和DPS通道。每个通道都有远程电压和接地检测。每个通道可在高达40V和低至-30V的1024个电压电平之间循环。它可以在高达2A的电流下运行。需要明确的是,WaferPak无法像高端探针卡那样进行精细测试,因为它们的探针要少得多。这些探头比高端ATE设备具有更精细的控制,关键在于它允许在在150摄氏度的高温下运行时进行高压测试。


老化工具能够进行多种类型的测试。这包括具有负高温栅极偏置的双极电压,这是为一位新客户提出要求并迅速开发的。

最后是Aehr的产品线,即FOX-XP WaferPak Aligner,它在FOUP或晶圆盒与WaferPak Contactors之间真空吸取装载和卸载晶圆。WaferPak对准器的成本通常不到100万美元,但根据晶圆厂的自动化要求,有多种产品可供选择。对准器可以支持多种Fox-XP工具,但许多晶圆厂希望完全自动化Fox-XP,这需要将它们与全自动对准器一对一配对。

如果有对Aehr Test Systems完整电话会议内容感兴趣的朋友可以登录
https://finance.yahoo.com/news/aehr-test-systems-nasdaq-aehr-074505840.html

*免责声明:本文由作者原创。文章内容系作者个人观点,碳化硅芯观察转载仅为了传达观点,仅代表碳化硅芯观察对该观点赞同或支持,如果有任何异议,欢迎联系碳化硅芯观察。

评论 (0)
  • 首个基于Transformer的分割检测+视觉大模型视频课程(23年新课+源码+课件)
    自动驾驶是高安全型应用,需要高性能和高可靠的深度学习模型,Vision Transformer是理想的选摔。现在主流的自动驾驶感知算法基本都使用了Vision Transformer相关技术,比如分割、2D/3D检测,以及最近大火的大模型 (如SAM),Vision Transformer在自动驾驶领域的落地方面遍地开花。5一方面,在自动驾驶或图像处理相关算法岗位的面试题中,Vision Transformer是必考题,需要对其理论知识有深入理解,并且在项目中真实的使用过相关技术。

    Transformer出自于Google于2017年发表的论文《Attention is all you need》,最开始是用于机器翻译,并且取得了非常好的效果。但是自提出以来,Transformer不仅仅在NLP领域大放异彩,并且在CV、RS等领域也取得了非常不错的表现。尤其是2020年,绝对称得上是Transformer的元年,比如在CV领域,基于Transformer的模型横扫各大榜单,完爆基于CNN的模型。为什么Transformer模型表现如此优异?它的原理是什么?它成功的关键又包含哪些?本文将简要地回答一下这些问题。

    我们知道Transformer模型最初是用于机器翻译的,机器翻译应用的输入是某种语言的一个句子,输出是另外一种语言的句子。
    var i *int = nil
    fmt.Println("i.size:", unsafe.Sizeof(i)) //8

    var i8 *int8 = nil
    fmt.Println("i8.size:", unsafe.Sizeof(i8)) //8

    var s *string = nil
    fmt.Println("s.size:", unsafe.Sizeof(s)) //8

    var ps *struct{} = nil
    fmt.Println("ps.size:", unsafe.Sizeof(ps)) //8

    var si []int = nil
    var si1 []int = nil
    fmt.Println("si.size:", unsafe.Sizeof(si)) //24

    var ii interface{} = nil
    fmt.Println("ii.size:", unsafe.Sizeof(ii)) //16
    我们以生成我,爱,机器,学习,翻译成<bos>,i,love,machine,learning,<eos>这个例子做生成过程来解释。
    训练:

    把“我/爱/机器/学习”embedding后输入到encoder里去,最后一层的encoder最终输出的outputs [10, 512](假设我们采用的embedding长度为512,而且batch size = 1),此outputs 乘以新的参数矩阵,可以作为decoder里每一层用到的K和V;
    将<bos>作为decoder的初始输入,将decoder的最大概率输出词向量A1和‘i’做cross entropy(交叉熵)计算error。
    将<bos>,“i” 作为decoder的输入,将decoder的最大概率输出词 A2 和‘love’做cross entropy计算error。
    将<bos>,“i”,“love” 作为decoder的输入,将decoder的最大概率输出词A3和’machine’ 做cross entropy计算error。
    将<bos>,“i”,"love ",“machine” 作为decoder的输入,将decoder最大概率输出词A4和‘learning’做cross entropy计算error。
    将<bos>,“i”,"love ",“machine”,“learning” 作为decoder的输入,将decoder最大概率输出词A5和终止符做cross entropy计算error。
    那么并行的时候是怎么做的呢,我们会有一个mask矩阵在这叫seq mask,因为他起到的作用是在decoder编码我们的target seq的时候对每一个词的生成遮盖它之后的词的信息。
    func main() {
    s := []string{"a", "b", "c"}
    fmt.Println("s:origin", s)
    changes1(s)
    fmt.Println("s:f1", s)

    changes2(s)
    fmt.Println("s:f2", s)

    changes3(s)
    fmt.Println("s:f3", s)
    }

    func changes1(s []string) {
    var tmp = []string{"x", "y", "z"}
    s = tmp
    }

    func changes2(s []string) {
    // item只是一个副本,不能改变s中元素的值
    for i, item := range s {
    item = "d"
    fmt.Printf("item=%s;s[%d]=%s", item, i, s[i])
    }
    }

    func changes3(s []string) {
    for i := range s {
    s[i] = "d"
    }
    }

    首先我们需要为每个输入向量(也就是词向量)创建3个向量,分别叫做Query、Key、Value。那么如何创建呢?我们可以对输入词向量分别乘上3个矩阵来得到Q、K、V向量,这3个矩阵的参数在训练的过程是可以训练的。注意Q、K、V向量的维度是一样的,但是它们的维度可以比输入词向量小一点,比如设置成64,其实这步也不是必要的,这样设置主要是为了与后面的Mulit-head注意力机制保持一致(当使用8头注意力时,单头所处理的词向量维度为512/8=64,此时Q、K、V向量与输入词向量就一致了)。我们假设输入序列为英文的"Thinking Machines"
    想要深度理解Attention机制,就需要了解一下它产生的背景、在哪类问题下产生,以及最初是为了解决什么问题而产生。

    首先回顾一下机器翻译领域的模型演进历史:

    机器翻译是从RNN开始跨入神经网络机器翻译时代的,几个比较重要的阶段分别是: Simple RNN, Contextualize RNN,Contextualized RNN with attention, Transformer(2017),下面来一一介绍。

    「Simple RNN」 :这个encoder-decoder模型结构中,encoder将整个源端序列(不论长度)压缩成一个向量(encoder output),源端信息和decoder之间唯一的联系只是: encoder output会作为decoder的initial states的输入。这样带来一个显而易见的问题就是,随着decoder长度的增加,encoder output的信息会衰减。
    func main(){
    var c = make(chan int)
    fmt.Printf("c.pointer=%p\n", c) //c.pointer=0xc000022180
    go func() {
    c <- 1
    addChannel(c)
    close(c)
    }()

    for item := range c {
    //item: 1
    //item: 2
    fmt.Println("item:", item)
    }
    }

    func addChannel(done chan int) {
    done <- 2
    fmt.Printf("done.pointer=%p\n", done) //done.pointer=0xc000022180
    }
    在测试模型的时候,Test:decoder没有label,采用自回归一个词一个词的输出,要翻译的中文正常从encoder并行输入(和训练的时候一样)得到每个单词的embedding,然后decoder第一次先输入bos再此表中的id,得到翻译的第一个单词,然后自回归,如此循环直到预测达到eos停止标记
    type visit struct {
    a1  unsafe.Pointer
    a2  unsafe.Pointer
    typ Type
    }

    func deepValueEqual(v1, v2 Value, visited map[visit]bool) bool {
    if !v1.IsValid() || !v2.IsValid() {
    return v1.IsValid() == v2.IsValid()
    }
    if v1.Type() != v2.Type() {
    return false
    }

    // We want to avoid putting more in the visited map than we need to.
    // For any possible reference cycle that might be encountered,
    // hard(v1, v2) needs to return true for at least one of the types in the cycle,
    // and it's safe and valid to get Value's internal pointer.
    hard := func(v1, v2 Value) bool {
    switch v1.Kind() {
    case Pointer:
    if v1.typ.ptrdata == 0 {
    // not-in-heap pointers can't be cyclic.
    // At least, all of our current uses of runtime/internal/sys.NotInHeap
    // have that property. The runtime ones aren't cyclic (and we don't use
    // DeepEqual on them anyway), and the cgo-generated ones are
    // all empty structs.
    return false
    }
    fallthrough
    case Map, Slice, Interface:
    // Nil pointers cannot be cyclic. Avoid putting them in the visited map.
    return !v1.IsNil() && !v2.IsNil()
    }
    return false
    }

    if hard(v1, v2) {
    // For a Pointer or Map value, we need to check flagIndir,
    // which we do by calling the pointer method.
    // For Slice or Interface, flagIndir is always set,
    // and using v.ptr suffices.
    ptrval := func(v Value) unsafe.Pointer {
    switch v.Kind() {
    case Pointer, Map:
    return v.pointer()
    default:
    return v.ptr
    }
    }
    addr1 := ptrval(v1)
    addr2 := ptrval(v2)
    if uintptr(addr1) > uintptr(addr2) {
    // Canonicalize order to reduce number of entries in visited.
    // Assumes non-moving garbage collector.
    addr1, addr2 = addr2, addr1
    }

    // Short circuit if references are already seen.
    typ := v1.Type()
    v := visit{addr1, addr2, typ}
    if visited[v] {
    return true
    }

    // Remember for later.
    visited[v] = true
    }

    switch v1.Kind() {
    case Array:
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Slice:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    // Special case for []byte, which is common.
    if v1.Type().Elem().Kind() == Uint8 {
    return bytealg.Equal(v1.Bytes(), v2.Bytes())
    }
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Interface:
    if v1.IsNil() || v2.IsNil() {
    return v1.IsNil() == v2.IsNil()
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Pointer:
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Struct:
    for i, n := 0, v1.NumField(); i < n; i++ {
    if !deepValueEqual(v1.Field(i), v2.Field(i), visited) {
    return false
    }
    }
    return true
    case Map:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    for _, k := range v1.MapKeys() {
    val1 := v1.MapIndex(k)
    val2 := v2.MapIndex(k)
    if !val1.IsValid() || !val2.IsValid() || !deepValueEqual(val1, val2, visited) {
    return false
    }
    }
    return true
    case Func:
    if v1.IsNil() && v2.IsNil() {
    return true
    }
    // Can't do better than this:
    return false
    case Int, Int8, Int16, Int32, Int64:
    return v1.Int() == v2.Int()
    case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
    return v1.Uint() == v2.Uint()
    case String:
    return v1.String() == v2.String()
    case Bool:
    return v1.Bool() == v2.Bool()
    case Float32, Float64:
    return v1.Float() == v2.Float()
    case Complex64, Complex128:
    return v1.Complex() == v2.Complex()
    default:
    // Normal equality suffices
    return valueInterface(v1, false) == valueInterface(v2, false)
    }
    }
    这便是encoder的整体计算流程图了,Transformer模型中堆叠了多个这样的encoder,无非就是输出连接输入罢了,常规操作。
    最后再附上一个Transformer的代码实现,读者有兴趣可以跟着自己复现一下Transformer模型的代码。
       package main

       import (
           "log"
           "sync"
       )

       func init() {
           log.SetFlags(log.Lshortfile)
       }
       func main() {
           lock := sync.Mutex{}

           //Go 1.18 新增,是一种非阻塞模式的取锁操作。当调用 TryLock() 时,
           //该函数仅简单地返回 true 或者 false,代表是否加锁成功
           //在某些情况下,如果我们希望在获取锁失败时,并不想停止执行,
           //而是可以进入其他的逻辑就可以使用TryLock()
           log.Println("TryLock:", lock.TryLock())
           //已经通过TryLock()加锁,不能再次加锁
           lock.Lock()

       }

  • 特斯拉电路图.rar
    特斯拉电路图,欢迎大家下载
  • RadarSensors_ARS308-21_cn数据手册
    RadarSensors_ARS308-21_cn数据手册
  • Wayking RadarSensors_LRR7710_中英文产品手册
    Wayking RadarSensors_LRR7710_中英文产品手册
  • XPM52C规格书 65W USB PD 多协议降压芯片
    XPM52C 是一款集成同步开关的降压转换器,支持多种输出快充协议、支持 USB Type-C 和 PD 等多种快充协议,包括 USB Type-C 和 PD 协议,高通 QC2.0/3.0/3.0+,华 为 FCP/SCP/HVSCP,VOOC 2.0/4.0 协议,联发科 PE,三星 AFC,USB BC1.2 DCP 以及 Apple 2.4A 充电规范,为车载充电器、各种快充适配器、智能排插等供电设备提供完 整的解决方案。
  • [完结19章]SpringBoot开发双11商品服务系统教程下载
    如何使用SpringBoot开发一款关于双11商品服务的系统?今天就给大家说道说道,希望对大家的学习有所帮助!
    1.什么是SpringBoot?
    Spring 的诞⽣是为了简化 Java 程序的开发的,⽽ Spring Boot 的诞⽣是为了简化 Spring 程序开发的。
    Spring Boot是由Pivotal团队提供的基于Spring的框架,该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。Spring Boot集成了绝大部分目前流行的开发框架,就像Maven集成了所有的JAR包一样,Spring Boot集成了几乎所有的框架,使得开发者能快速搭建Spring项目。
    2.SpringBoot的优点
    快速集成框架,Spring Boot 提供了启动添加依赖的功能,⽤于秒级集成各种框架。
    内置运⾏容器,⽆需配置 Tomcat 等 Web 容器,直接运⾏和部署程序。
    快速部署项⽬,⽆需外部容器即可启动并运⾏项⽬。
    可以完全抛弃繁琐的 XML,使⽤注解和配置的⽅式进⾏开发。
    ⽀持更多的监控的指标,可以更好的了解项⽬的运⾏情况

    后端配置
    1.1创建Springboot工程
    打开idea->file->new->project
    选择spring Initializer进行配置,java版本选择8,点击next
    - internal 应用代码
        - controllers 控制器模块
          - admin 后端控制器
          - front 前端控制器
        - listen redis监听器
        - models 模型模块
        - service 服务模块
          - product_serive 商品服务
          - wechat_menu_serive 微信公众号菜单服务
          ......
    - conf 公共配置
      -config.yml yml配置文件
      -config.go 配置解析,转化成对应的结构体
      
    - middleware 中间件
        - AuthCheck.go  jwt接口权限校验
    - cors.go 跨域处理
    ......
    - pkg 程序应用包
      - app
      - base
      - casbin
      - jwt
      - qrcode
      - wechat
      .....
    - routere 路由
    - logs 日志存放
    - runtime 资源目录
    首先,我仔细分析了需求,并且根据业务逻辑设计了合适的接口。
    对于多表关联查询,我使用了MyBatis的注解来编写SQL语句,并通过@One和@Many等注解来实现结果集的映射。
    对于数据分页,我使用了MyBatis-Plus提供的Page对象,并结合相关方法来实现数据分页查询。
    2. 上课中的优秀项目
    在课堂上,我完成了一个优秀的项目,主要是学生实体类的增删改查功能。通过这个项目,我巩固了对Spring Boot框架的理解和掌握。
    具体实现如下:
    //初始化redis
    err := cache.InitRedis(cache.DefaultRedisClient, &redis.Options{
    Addr:        global.CONFIG.Redis.Host,
    Password:    global.CONFIG.Redis.Password,
    IdleTimeout: global.CONFIG.Redis.IdleTimeout,
    }, nil)
    if err != nil {
    if err != nil {
    global.LOG.Error("InitRedis error ", err, "client", cache.DefaultRedisClient)
    panic(err)
    }
    panic(err)
    }

    //初始化mysql
    err = db.InitMysqlClient(db.DefaultClient, global.CONFIG.Database.User,
    global.CONFIG.Database.Password, global.CONFIG.Database.Host,
    global.CONFIG.Database.Name)
    if err != nil {
    global.LOG.Error("InitMysqlClient error ", err, "client", db.DefaultClient)
    panic(err)
    }
    global.Db = db.GetMysqlClient(db.DefaultClient).DB

    开发步骤
    SpringBoot 开发起来特别简单,分为如下几步:
    创建新模块,选择Spring初始化,并配置模块相关基础信息
    选择当前模块需要使用的技术集
    开发控制器类
    运行自动生成的Application类
    知道了 SpringBoot 的开发步骤后,接下来我们进行具体的操作
    shutdown.NewHook().Close(
    //关闭http server
    func() {
    ctx, cancel := context.WithTimeout(context.Background(), time.Second*10)
    defer cancel()
    if err := server.Shutdown(ctx); err != nil {
    logging.Error("http server shutdown err", err)
    }
    },

    func() {
    //关闭kafka producer(特别是异步生产者,强制关闭会导致丢消息)
    if err := mq.GetKafkaSyncProducer(mq.DefaultKafkaSyncProducer).Close(); err != nil {
    logging.Error("kafka shutdown err", err)
    }
    },
    func() {
    //关闭mysql
    if err := db.CloseMysqlClient(db.DefaultClient); err != nil {
    logging.Error("mysql shutdown err", err)
    }
    },
    func() {
    //关闭redis
    if err := cache.GetRedisClient(cache.DefaultRedisClient).Close(); err != nil {
    logging.Error("redis shutdown err", err)
    }
    },
    )
    //也可以自己实现优雅关闭
    //signals := make(chan os.Signal, 0)
    //signal.Notify(signals, syscall.SIGHUP, syscall.SIGINT, syscall.SIGTERM, syscall.SIGQUIT)
    //s := <-signals
    //global.LOG.Warn("shop receive system signal:", s)
    //ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
    //defer cancel()
    //err := server.Shutdown(ctx)
    //if err != nil {
    // global.LOG.Error("http server error", err)
    //}
    //mq.GetKafkaSyncProducer(mq.DefaultKafkaSyncProducer).Close()

    选择 Spring Initializr ,用来创建 SpringBoot 工程
    以前我们选择的是 Maven ,今天选择 Spring Initializr 来快速构建 SpringBoot 工程。而在 Module SDK 这一项选择我们安装的 JDK 版本。
    type StoreProduct struct {
    Image        string         `json:"image" valid:"Required;"`
    SliderImage  string         `json:"slider_image" valid:"Required;"`
    StoreName    string         `json:"store_name" valid:"Required;"`
    StoreInfo    string         `json:"store_info" valid:"Required;"`
    Keyword      string         `json:"keyword" valid:"Required;"`
    CateId       int            `json:"cate_id" valid:"Required;"`
    ProductCate  *StoreCategory `json:"product_cate" gorm:"foreignKey:CateId;association_autoupdate:false;association_autocreate:false"`
    Price        float64        `json:"price" valid:"Required;"`
    VipPrice     float64        `json:"vip_price" valid:"Required;"`
    OtPrice      float64        `json:"ot_price" valid:"Required;"`
    Postage      float64        `json:"postage" valid:"Required;"`
    UnitName     string         `json:"unit_name" valid:"Required;"`
    Sort         int16          `json:"sort" valid:"Required;"`
    Sales        int            `json:"sales" valid:"Required;"`
    Stock        int            `json:"stock" valid:"Required;"`
    IsShow       *int8          `json:"is_show" valid:"Required;"`
    IsHot        *int8          `json:"is_hot" valid:"Required;"`
    IsBenefit    *int8          `json:"is_benefit" valid:"Required;"`
    IsBest       *int8          `json:"is_best" valid:"Required;"`
    IsNew        *int8          `json:"is_new" valid:"Required;"`
    Description  string         `json:"description" valid:"Required;"`
    IsPostage    *int8          `json:"is_postage" valid:"Required;"`
    GiveIntegral int            `json:"give_integral" valid:"Required;"`
    Cost         float64        `json:"cost" valid:"Required;"`
    IsGood       *int8          `json:"is_good" valid:"Required;"`
    Ficti        int            `json:"ficti" valid:"Required;"`
    Browse       int            `json:"browse" valid:"Required;"`
    IsSub        *int8          `json:"is_sub" valid:"Required;"`
    TempId       int64          `json:"temp_id" valid:"Required;"`
    SpecType     int8           `json:"spec_type" valid:"Required;"`
    IsIntegral   *int8          `json:"isIntegral" valid:"Required;"`
    Integral     int32          `json:"integral" valid:"Required;"`
    BaseModel
    }

    //定义商品消息结构
    type ProductMsg struct {
    Operation string `json:"operation"`
    *StoreProduct
    }
    切换web服务器
    现在我们启动工程使用的是 tomcat 服务器,那能不能不使用 tomcat 而使用 jetty 服务器,jetty 在我们 maven 高级时讲 maven 私服使用的服务器。而要切换 web 服务器就需要将默认的 tomcat 服务器给排除掉,怎么排除呢?使用 exclusion 标签
    func (e *StoreProductController) Post(c *gin.Context) {
    var (
    dto  dto2.StoreProduct
    appG = app.Gin{C: c}
    )
    httpCode, errCode := app.BindAndValid(c, &dto)
    if errCode != constant.SUCCESS {
    appG.Response(httpCode, errCode, nil)
    return
    }
    productService := product_service.Product{
    Dto: dto,
    }
    model, err := productService.AddOrSaveProduct()
    if err != nil {
    appG.Response(http.StatusInternalServerError, constant.FAIL_ADD_DATA, nil)
    return
    }

    //发消息队列
    defer func() {
    operation := product.OperationCreate
    if dto.Id > 0 {
    operation = product.OperationUpdate
    }
    productMsg := models.ProductMsg{
    operation,
    &model,
    }
    msg, _ := json.Marshal(productMsg)
    p, o, e := mq.GetKafkaSyncProducer(mq.DefaultKafkaSyncProducer).Send(&sarama.ProducerMessage{
    Topic: product.Topic,
    Key:   mq.KafkaMsgValueStrEncoder(strconv.FormatInt(dto.Id, 10)),
    Value: mq.KafkaMsgValueEncoder(msg),
    },
    )
    if e != nil {
    global.LOG.Error("send product msg error ", e, "partition :", p, "offset :", o, "id :", dto.Id)
    }
    }()

    appG.Response(http.StatusOK, constant.SUCCESS, nil)

    }


  • [完结11章]技术大牛成长课,从0到1带你手写一个数据库系统
    大家好,今天我将给大家分享关于如何开发一个数据库系统的知识,将从0到1手把手带着一步步去开发这个项目,希望我的分享对大家的学习和工作有所帮助,如果有不足的地方还请大家多多指正。

    一、什么是数据库系统
    数据库系统一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员构成 

    二、数据库管理系统的主要功能包括
    数据定义功能:DBMS提供数据定义语言(Data Definition Language,DDL),用户通过它可以方便地对数据库中的对象进行定义
    数据组织、存储和管理:DBMS要分类组织、存储和管理各种数据,包括数据字典、用户数据、数据的存取路径等。
    数据操纵功能:DBMS提-供数据操纵语言(Data Manipulation Language,DML),用户可以使用DML操纵数据,实现对数据库的基本操作,如查询、插入、删除和修改等
    数据库的事务管理和运行管理:数据库在建立、运用和维护时由数据管理系统统一管理、统一控制,以保证数据的安全性、完整性、多用户对数据的并发使用以及发生故障后的系统恢复
    数据库建立和维护功能:数据库初始数据的输入、转换功能,数据库的转储、恢复功能,数据库的重组织功能和性能监视、分析功能等。

    三、数据库系统结构
    1.1模式(概念模式或逻辑模式)
    定义:数据库中全体数据的逻辑结构特征的描述,是所有用户的公用数据库结构。

    特性:

    一个数据库只有一个模式
    模式与应用程序无关,只是数据的一个框架
    1.2子模式(外模式或用户模式)
    定义:数据库用户所见和使用的局部数据的逻辑结构和特征的描述,是用户所用的数据库结构

    特性:

    子模式是模式的子集
    一个数据库有多个子模式,每个用户至少使用一个子模式
    同一个用户可以使用不同的子模式,每个子模式可为不同的用户所用
    1.3内模式(存储模式)
    定义:是数据物理结构和存储方法的描述。它是整个数据库的最低层结构的表示。

    特性:

    一个数据库只有一个内模式,内模式对用户透明
    一个数据库由多种文件组成,如用户数据文件,索引文件及系统文件
    内模式设计直接影响数据库的性能

    以下是开发流程:
    在idea中构建如下几个子模块工程:
    @PostMapping("/doLogin")
    @ApiOperation(value = "一键注册登录接口", notes = "一键注册登录接口", httpMethod = "POST")
    public GraceJSONResult doLogin(HttpServletRequest request,
                                   HttpServletResponse response,
                                   @RequestBody @Valid RegisterLoginBO registerLoginBO,
                                   BindingResult result);
    验证的字段上方可以写一些相关的注解,系统识别后会自动检查
    RegisterLoginBO.java
    public class RegisterLoginBO {

        @NotBlank(message = "手机号不能为空")
        private String mobile;
        @NotBlank(message = "短信验证码不能为空")
        private String smsCode;

        public String getMobile() {
            return mobile;
        }

        public void setMobile(String mobile) {
            this.mobile = mobile;
        }

        public String getSmsCode() {
            return smsCode;
        }

        public void setSmsCode(String smsCode) {
            this.smsCode = smsCode;
        }

        @Override
        public String toString() {
            return "RegisterLoginBO{" +
                    "mobile='" + mobile + '\'' +
                    ", smsCode='" + smsCode + '\'' +
                    '}';
        }
    }

    如果校验有问题,那么可以直接获得并且放回给前端即可。
    BaseController.java
    /**
     * 验证beanBO中的字段错误信息
     * @param result
     * @return
     */
    public Map<String, String> getErrors(BindingResult result) {
        Map<String, String> map = new HashMap<>();
        List<FieldError> errorList = result.getFieldErrors();
        for (FieldError error : errorList) {
            // 发生验证错误所对应的某一个属性
            String errorField = error.getField();
            // 验证错误的信息
            String errorMsg = error.getDefaultMessage();
            map.put(errorField, errorMsg);
        }
        return map;
    }
    一般来说,admin系统不会有主动注册功能,账号都是分配的,那么默认就会存在一个基本账户,这也是预先通过代码生成用户名和密码的。直接手动生成即可:
    <dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
    </dependency>

    同理,查询操作也是类似JPA的操作,再继承Repository后直接使用其内置api即可:
    FriendLinkMngControllerApi.java
    @PostMapping("getFriendLinkList")
    @ApiOperation(value = "查询友情链接列表", notes = "查询友情链接列表", httpMethod = "POST")
    public GraceJSONResult getFriendLinkList();
    首先可以在数据库通过写sql脚本实现查询
    SELECT
    c.id as commentId,
    c.father_id as fatherId,
    c.article_id as articleId,
    c.comment_user_id as commentUserId,
    c.comment_user_nickname as commentUserNickname,
    c.content as content,
    c.create_time as createTime,
    f.comment_user_nickname as quoteUserNickname,
    f.content as quoteContent
    FROM
    comments c
    LEFT JOIN
    comments f
    on
    c.father_id = f.id
    WHERE
    c.article_id = '2006117B57WRZGHH'
    order by
    c.create_time
    desc
    目前我们所搭建的eureka是单机单实例的注册中心,如果挂了,那么整个微服务体系完全不可以,这是不应该的,所以为了实现eureka的高可用,我们可以搭建集群。
    在进行集群构建之前,大家先参照目前的eureka再去构建一个一模一样的工程,可以取名为 springcloud-eureka-cluster。
    为集群中各个eureka节点配置host
    eureka:
      instance:
        hostname: eureka-cluster-${port:7001}    # 集群中每个eureka的名字都要唯一
      # 自定义eureka集群中另外的两个端口号
      other-node-port2: ${p2:7002}
      other-node-port3: ${p3:7003}
      client:
    #    register-with-eureka: false
    #    fetch-registry: false
        service-url:
          # 集群中的每个eureka单实例,都需要相互注册到其他的节点,在此填入集群中其他eureka的地址进行相互注册
          defaultZone: http://eureka-cluster-${eureka.other-node-port2}:${eureka.other-node-port2}/eureka/,http://eureka-cluster-${eureka.other-node-port3}:${eureka.other-node-port3}/eureka/
    我们自己测试的时候时间可以设置为10秒内有10次,我认定非法请求,直接限制这个ip访问15秒,15秒后释放。(像有的网站会出现二维码让你扫描通过,或者手机验证码或者人机交互判断你当前是否是人还是机器,因为有可能是爬虫请求)
    开发步骤:
    首先在yml中设置基本参数:
    @Override
    public Object run() throws ZuulException {
        System.out.println("执行【IP黑名单】Zuul过滤器...");

        // 获得上下文对象requestContext
        RequestContext requestContext = RequestContext.getCurrentContext();
        HttpServletRequest request = requestContext.getRequest();

        // 获得ip
        String ip = IPUtil.getRequestIp(request);

        /**
         * 需求:
         * 判断ip在10秒内请求的次数是否超过10次,
         * 如果超过,则限制访问15秒,15秒过后再放行
         */
        final String ipRedisKey = "zuul-ip:" + ip;
        final String ipRedisLimitKey = "zuul-ip-limit:" + ip;

        // 获得剩余的限制时间
        long limitLeftTime = redis.ttl(ipRedisLimitKey);
        // 如果剩余时间还存在,说明这个ip不能访问,继续等待
        if (limitLeftTime > 0) {
            stopRequest(requestContext);
            return null;
        }

        // 在redis中累加ip的请求访问次数
        long requestCounts = redis.increment(ipRedisKey, 1);

        // 从0开始计算请求次数,初期访问为1,则设置过期时间,也就是连续请求的间隔时间
        if (requestCounts == 1) {
            redis.expire(ipRedisKey, timeInterval);
        }

        // 如果还能取得到请求次数,说明用户连续请求的次数落在10秒内
        // 一旦请求次数超过了连续访问的次数,则需要限制这个ip了
        if (requestCounts > continueCounts) {
            // 限制ip访问一段时间
            redis.set(ipRedisLimitKey, ipRedisLimitKey, limitTimes);

            stopRequest(requestContext);
        }

        return null;
    }

    private void stopRequest(RequestContext requestContext){
        // 停止继续向下路由,禁止请求通信
        requestContext.setSendZuulResponse(false);
        requestContext.setResponseStatusCode(200);
        String result = JsonUtils.objectToJson(
                GraceJSONResult.errorCustom(
                        ResponseStatusEnum.SYSTEM_ERROR_BLACK_IP));
        requestContext.setResponseBody(result);
        requestContext.getResponse().setCharacterEncoding("utf-8");
        requestContext.getResponse().setContentType(MediaType.APPLICATION_JSON_VALUE);
    }
    上面这些都是通过不同key要执行多次才能得到结果,一般来说我们会使用es的aggs功能做聚合统计,会更好。
    通过一个脚本来统计男女数量:
    POST http://192.168.1.203:9200/fans/_doc/_search
    {
        "size": 0,
        "query":{
            "match":{
                "writerId":"201116760SMSZT2W"
            }
        },
        "aggs": {
            "counts": {
                "terms": {
                    "field": "sex"
                }
            }
        }
    }

    以下就是数据库系统开发的整个流程讲解,感谢大家的阅读

  • [完结19章]SpringBoot开发双11商品服务系统
    今天给大家分享一下关于SpringBoot开发双11商品服务系统的整个流程,我将深度还原大厂实习期技术成长全流程,让你收获大厂项目开发全流程与实战经验,具备应对大流量场景问题的解决能力,全面助力提升实习/转正/跳槽表现力与成功率。


    Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。通过这种方式,Spring Boot致力于在蓬勃发展的快速应用开发领域(rapid application development)成为领导者。

    目的
    让大家更容易使用 spring,更容易集成各种常用的中间件、开源软件。
    SpringBoot 基于 Spring 开发, SpringBoot 本身并不提供 Spring 框架的核心特性以及扩展功能,只是用于快速、敏捷地开发新一代基于 Spring 框架的应用程序。
    SpringBoot 不是用来替代 spring 的解决方案,而是和 spring 框架紧密结合提升 spring 开发者体验的工具。

    准备测试数据
    我们先导入准备好的测试数据,这个测试数据是一份商品数据。

    字段包含商品id,name(商品名)
    last_month_sales(最近一个月的销量)
    favorites(收藏数)这几个字段,我们主要是通过商品名来搜索。
    首先我先先创建一个商品索引
    PUT goods
    {
      "settings": {
        "number_of_shards": 1,
        "number_of_replicas": 0
      },
      "mappings": {
        "properties": {
          "id": {
            "type": "keyword",
            "doc_values": false,
            "norms": false,
            "similarity": "boolean"
          },
          "name": {
            "type": "text"
          },
            "price": {
            "type": "double"
          },
          "last_month_sales": {
            "type": "long"
          },
          "favorites": {
            "type": "long"
          },
          "year":{
            "type": "short"
          }
        }
      }
    }
    千里之行,始于足下。想要舒舒服服地使用Spring框架,就要把它的开发环境配置好,这对它好,也对我好。

    1. jdk 的配置       
    使用 IDEA 进行开发,在 IDEA 中配置 jdk 的方式很简单,打开 File->Project Structure选择 SDKs。
    在 JDK home path 中选择本地 jdk 的安装目录。
    在 Name 中为 jdk 自定义名字通过以上三步骤,即可导入本地安装的 jdk。如果是使用 STS 或者 eclipse 可以通过两步骤添加:
    window->preference->java->Instralled JRES 来添加本地 jdk。
    window-->preference-->java-->Compiler 选择 jre,和 jdk 保持一致。
    PUT test_index/_doc/1
    {
      "string_field":"imooc",
      "int_field": 100,
      "float_field":3.14,
      "bool_field":true,
      "date_field":"2022/03/16",
      "obj_field":{"key1":"value1","key2":100},
      "array_field1":[100,3.14],
      "array_field2":[100,"200"],
      "array_field3":["2022/03/16","100"],
      "array_field4":["100","2022/03/16"],
      "null_field":null
      }
      创建 Spring Boot 项目后需要进行 maven 配置。打开 File->settings,搜索 maven,配置一下本地的 maven 信息。在 Maven home directory 中选择本地 Maven 的安装路径;在 User settings file 中选择本地 Maven 的配置文件所在路径。在配置文件中配置一下国内阿里的镜像,这样在下载 maven 依赖时,速度会变得很快。
    {
      "test_index" : {
        "mappings" : {
          "properties" : {
            "array_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            },
            "bool_field" : {
              "type" : "boolean"
            },
            "date_field" : {
              "type" : "date",
              "format" : "yyyy/MM/dd HH:mm:ss||yyyy/MM/dd||epoch_millis"
            },
            "float_field" : {
              "type" : "float"
            },
            "int_field" : {
              "type" : "long"
            },
            "obj_field" : {
              "properties" : {
                "key1" : {
                  "type" : "text",
                  "fields" : {
                    "keyword" : {
                      "type" : "keyword",
                      "ignore_above" : 256
                    }
                  }
                },
                "key2" : {
                  "type" : "long"
                }
              }
            },
            "string_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            }
          }
        }
      }
    }

    从以上结果中,我们可以看到 Spring Boot 通过MVN方式自动为项目配置了对应的 springframework、logging、jackson 以及 Tomcat 等依赖,而这些正是我们在开发 Web 项目时所需要的。

    那么细心的同学可能会发现一个问题,即在以上 pom.xml 的配置中,引入依赖 spring-boot-starter-web 时,并没有指明其版本(version),但在依赖列表中,我们却看到所有的依赖都具有版本信息,那么这些版本信息是在哪里控制的呢? 
    {
      "_index" : "test_index",
      "_id" : "1",
      "_version" : 1,
      "_seq_no" : 0,
      "_primary_term" : 1,
      "found" : true,
      "_source" : {
        "string_field" : "Chan",
        "int_field" : 100,
        "int_string_field" : "100",
        "float_field" : 3.14,
        "bool_field" : true,
        "date_field" : "2022/03/16",
        "obj_field" : {
          "key1" : "value1",
          "key2" : 100
        },
        "array_field" : [
          "value1",
          "100"
        ],
        "null_field" : null
      }
    }
    spring-boot-starter-parent 是所有 Spring Boot 项目的父级依赖,它被称为 Spring Boot 的版本管理中心,可以对项目内的部分常用依赖进行统一管理。

    <parent>    

            <groupId>org.springframework.boot</groupId>    

            <artifactId>spring-boot-starter-parent</artifactId>    

            <version>2.5.6</version>    

            <relativePath/> 

    </parent>

    Spring Boot 项目可以通过继承 spring-boot-starter-parent 来获得一些缺省的配置内容,它主要提供了以下特性:

    默认 JDK 版本(Java 8)

    默认字符集(UTF-8)

    依赖管理功能

    资源过滤

    默认插件配置识别 

    application.properties 或 application.yml 类型的配置文件
    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":false 
      }
    }
    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":"strict" 
      }
    }


    POST test_index/_doc/2
    {
      "field1":{
       "field2":"imooc ES" 
      }
    }

    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    以下就是本文的全部内容,感谢大家观看
  • 托马斯微积分第十版中文
    电子书为扫描版本,自己手动添加书签作为目录供参考
  • 基于单片机的工业级液晶显示控制芯片
    TFT-LCD液晶显示控制芯片RA8889ML3N的优势:
    低功耗及功能强大:这款芯片最大支持分辨率为1366x2048,内置128Mb SDRAM,可为内容显示进行快速刷新,同时内置视频解码单元,支持JPEG/AVI硬解码播放,为普通单片机实现视频播放提供可能。
    支持多种接口:RA8889ML3N支持MCU端的8080/6800 8/16-bit 非同步并列接口和3/4线SPI及IIC串列接口,以及最大驱动1366x800分辨率的TFT LCD。
    显示功能强大:RA8889ML3N提供多段的显示记忆体缓冲区段,支持多图层功能,并提供画中画(PIP)、支持透明度控制与显示旋转镜像等显示功能。
    应用范围广:这款芯片广泛应用于自动化控制设备、电力监测控制、测量检测仪器仪表、电教设备、智能家电、医疗检测设备、车用仪表及工控自动化等领域。
  • 背景   随着汽车行业的不断迭代发展,市场及消费者对汽车提出了更高的要求,智能网联、自动驾驶等新技术的应用推动整车厂对车载芯片、汽车软件等方面投入了更多的精力,SOA(面向服务的架构)逐渐成为大多整车厂顺应市场趋势和技术趋势的首选。SOA架构使服务间的通讯变得更加简单,ECU更新、软件升级等变得更加灵活,使系统的健壮性和拓展性获得了大幅提高。但是在SOA架构开发阶段,由于市面上的IDL(接口描述语言)众多,例如FIDL、Protobuf、vCDL、ARXML、OMG IDL、CAN
    北汇信息 2023-12-06 11:41 73浏览
  • 近日,在传感器专家网的压力传感器专业交流群组中,有相关专家交流了目前我国压力传感器的一些情况。交流中指出,目前国内已有一些企业在做MEMS压力传感器芯片,在该领域国内相关企业总体来说技术差不多,精度等关键技术指标彼此间相差不大,但与国外压力传感器芯片巨头相比,精度等指标却有较大差距。传感器专家网https://www.sensorexpert.com.cn专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器
    传感器专家网 2023-12-06 11:03 52浏览
  • #这段代码是一个基于C语言的嵌入式程序,用于在HPMicro平台上运行。它的主要功能是初始化一个LED灯,并使其以一定的时间间隔闪烁。#以下是对代码的解析:#```c#include #include "board.h"#include "hpm_debug_console.h"#define LED_FLASH_PERIOD_IN_MS 300int main(void){    int u;    board_init(); // 初始化板子 
    丙丁先生 2023-12-06 14:22 105浏览
  • 来源:虹科汽车电子 虹科技术丨BabyLIN产品如何轻松搞定K线协议实现? 原文链接:https://mp.weixin.qq.com/s/LR7VHFQajjyw6s6bVDJmsg 欢迎关注虹科,为您提供最新资讯!   导读 为了实现K线通信,SDF-V3在协议部分中定义了新的协议类型KLine Raw。所有能够运行SDF-V3文件(LinWorks版本在V.2.29.4以上)并使用最新固件(固件版本在V.6.18以上)的BabyLIN设备都可以执行KLine Raw
    虹科电子科技 2023-12-06 14:42 108浏览
  •     今天看到一个麦肯锡的统计数据,2021年中国出口的电子产品占世界34%。越来越多的PCB组件在中国造出来,然后送往全世界。作为电子工程师,除了增加修养,不断实现良好的设计,也要减少电子垃圾,对国际上的主要环保要求有所了解。    ROHS  Restriction of Hazardous Substances  有毒物质限制        这个标准针对 6 类电子产品中常见的的有毒物质,
    电子知识打边炉 2023-12-06 22:21 107浏览
  • 近日,英国伦敦的可持续倡议(SMI)公布了2023年《地球宪章》徽章获奖名单。在这个名单中,全球共17家企业入选,中国企业仅占两席。最值得注目的是,海尔智家作为唯一获奖的中国家电企业,荣登榜单。 据了解,《地球宪章》徽章由现任英国国王查尔斯三世于2021年发起,旨在表彰对全球环境的可持续发展做出突出贡献的企业,鼓励企业将自然、人类和地球置于核心位置,通过创新和可持续的商业模式,共同应对全球气候挑战。获奖企业由来自环境、商业、政治和慈善界的全球专家小组经过严苛的评选选出。 海尔
    锦缎研究院 2023-12-06 12:41 53浏览
  • 摘要:根据CINNO Research产业统计数据,Q3'23国内智能手机屏下指纹识别占比创历史新高达45%,而侧边指纹识别占比较去年同期下降12%,后置指纹识别占比下降至1%,而前置指纹已淡出国内智能手机指纹识别市场。根据CINNO Research产业统计数据,受华为、荣耀热门机型销售的影响,Q3'23国内智能手机指纹识别搭载率上升至84%。图示:中国市场智能手机指纹识别技术别占比趋势来源: CINNO Research月度中国市场智能手机指纹识别应用趋势报告2023年第三季度,国内OLED
    CINNOResearch 2023-12-06 12:53 91浏览
  • 光耦合器是一种在现代科技中发挥关键作用的设备,其应用领域横跨通信、医疗、工业等多个行业。光耦合器通过巧妙地将光电子器件结合起来,实现了光与电的高效转换和传输,为光电子领域的发展提供了强大的支持。光耦合器是什么光耦合器是一种用于隔离、耦合和传输光信号的器件。其主要功能是将一个光学系统的光信号转换成电信号,或者将电信号转换为光信号,以实现光与电之间的高效转换。在各类光电子设备中,光耦合器起到了桥梁的作用,实现了不同部分之间的无缝衔接。光耦合器的原理及结构光耦合器的基本原理是通过光电二极管和光电晶体管
    克里雅半导体科技 2023-12-06 10:58 31浏览
  • ​无论当下看不看机会,把握行情肯定是没错。 通过岗位数量,岗位要求(如对学历,技术点的要求)来了解行情是有效途径之一。 可以找我了解更多全国岗位。 【嵌入式软件工程师】 上海,风电行业国资企业,对学历有要求。 岗位职责: 1. 负责产品全周期研发,包括市场调研、客户需求技术转化、产品设计、产品制造、产品安装调试、产品测试验证和产品认证; 2. 负责产品失效根因分析,提供有效解决方案; 3. 负责组织供应商选择和产品质量管控; 4. 组织编制产品开发技
    落子无悔 2023-12-06 13:27 63浏览
  • 导语:CINNO Research统计数据表明,Q3'23全球半导体设备厂商市场规模前十大公司合计超250亿美元,同比下降9%,环比增长3%。CINNO Research统计数据表明,Q3'23全球半导体设备厂商市场规模Top10营收合计超250亿美元,同比下降9%,环比增长3%。Q3'23全球半导体设备厂商市场规模排名Top10与1H'23的Top10设备商相比,日立高新(Hitachi High-Tech)排名跌出Top10,泰瑞达(Teradyne)排名回归第十。荷兰公司阿斯麦(ASML)
    CINNOResearch 2023-12-06 14:04 105浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦