化解射频和微波设计挑战的六个技巧

电子万花筒 2023-09-23 08:40
电子万花筒平台核心服务

 中国最活跃的射频微波天线雷达微信技术群

电子猎头:帮助电子工程师实现人生价值! 

电子元器件:价格比您现有供应商最少降低5%



即使是最自信的设计人员,对于射频电路也往往望而却步,因为它会带来巨大的设计挑战,并且需要专业的设计和分析工具。这里将为您介绍六条技巧,来帮助您简化任何射频PCB 设计任务和减轻工作压力!

1、保持完好、精确的射频形状

类似前面描述的一些严重错误可能导致电路性能低下,甚至无法工作。为了尽量减少错误、简化射频设计任务以及提高生产率,PCB 设计工具可以针对复杂的铜皮形状提供导入控制。例如,您可以通过控制DXF 文件中的层,并将其重新映射至CAD 电气系统层,来创建可用的铜皮形状(图1)。

图1:设计工具如果允许用户控制DXF 导入过程,将有助于减少人为错误和误差,例如在由于复杂性过高而导致导入的文件无法转换为铜皮形状时

2、保留尖拐角

设计用于射频和微波的铜皮形状时,一个很重要的方面是能够创建带尖拐角的Gerber 文件。优秀的PCB设计工具可以简化这一过程。例如,使用50 毫米线条绘制形状与使用50 毫米圆形光圈绘图相比,往往令设计具有较小的半径。设计工具在创建Gerber 文件时,可通过正确地自动转换线条宽度来获得尖拐角(图2)。

图2:有效的PCB 设计工具会自动考虑用于绘制形状的线型,以计算准确的线条宽度,帮助您轻松创建尖拐角。

3、自动生成倒角

射频和微波电路中经常用到倒角,以减小馈线与电容器之间的分段不连续性电抗,从而改善MMIC 的频率性能。90º 拐角与倒角之间的距离至关重要。因此,设计人员需要采用自动方法来基于设计指定需要生成的倒角比率。PCB 设计工具如果能够基于设计规则自动强制实施需要生成的倒角比率,设计人员和工程师将会从中受益,在节省时间的同时提高设计质量(图3)。

图3:设置倒角规则的功能可以简化设计过程和节省时间。

4、使用自动化方法有助于布置共面波导和通道波导

共面波导和通道波导在射频和微波设计中也很常见。采取手动方式创建时,此项任务可能非常耗时,而且容易出错。设计人员需要控制走线与过孔之间的特定距离,以及一个过孔与另一个过孔之间的距离,从而确保电路具有符合设计要求的性能。设计工具在这方面也能提供帮助,即通过提供过孔使用控制和自动使用过孔来降低复杂性和提高质量(图4)。

图4:PCB 设计工具如果能够控制共面波导和波导过孔的创建,将有助于显著减少设计错误和缩短设计时间。

5、使用自动缝合孔

射频设计的另一个重要方面是确保正确地屏蔽带过孔的区域。尽管此任务可由设计人员手动进行,但这个过程极其耗时。如果PCB 设计工具能够自动完成此过程,将可以缩短设计周期时间并确保符合您的所有设计规则。利用此类工具,设计人员可以指定过孔模式生成规则,而将剩余的工作全部交由PCB 设计工具完成。

6、使用设计规则确保“设计即正确”

支持射频设计的PCB 设计工具通常允许设置多项设计规则:用于不同铜皮区域的过孔类型;过孔自身需要连接到的网络类型;从铜皮区域边缘到过孔需要保持的距离;一个过孔到下一个过孔的距离;过孔模式类型;以及能否仅仅通过向铜皮区域的外缘添加过孔来生成法拉第笼(图5)。

图5:利用支持射频设计的PCB 设计工具,您可以设置用于生成过孔模式的设计规则,并自动在您的设计中强制实施这些规则,从而节省您的时间和确保符合您的所有设计规则。

欢迎射频微波雷达通信工程师关注公众号

中国最纯粹的射频微波雷达通信工程师微信技术群,欢迎您的加入,来这里一起交流和讨论技术吧!进群记得备注方向和公司名称哦,我们将邀请您进细分群!

用手指按住就可以加入微信技术群哦!

电子万花筒平台自营:Xilinx ALTERA ADI TI ST NXP 等百余品牌的电子元器件,可接受BOM清单,缺料,冷门,停产,以及国外对华禁运器件业务!


欢迎大家有需求随时发型号清单,我们将在第一时间给您呈上最好的报价,微信(QQ同号):1051197468


与我们合作,您的器件采购成本将相比原有供应商降低5%以上!!不信?那您就来试试吧!!欢迎来撩!!


电子万花筒 电子万花筒,每个电子工程师都在关注的综合型技术与行业服务平台!
评论 (0)
  • 13、如何解决直插差模电感的异响问题
    13、如何解决直插差模电感的异响问题
  • [完结11章]技术大牛成长课,从0到1带你手写一个数据库系统
    大家好,今天我将给大家分享关于如何开发一个数据库系统的知识,将从0到1手把手带着一步步去开发这个项目,希望我的分享对大家的学习和工作有所帮助,如果有不足的地方还请大家多多指正。

    一、什么是数据库系统
    数据库系统一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员构成 

    二、数据库管理系统的主要功能包括
    数据定义功能:DBMS提供数据定义语言(Data Definition Language,DDL),用户通过它可以方便地对数据库中的对象进行定义
    数据组织、存储和管理:DBMS要分类组织、存储和管理各种数据,包括数据字典、用户数据、数据的存取路径等。
    数据操纵功能:DBMS提-供数据操纵语言(Data Manipulation Language,DML),用户可以使用DML操纵数据,实现对数据库的基本操作,如查询、插入、删除和修改等
    数据库的事务管理和运行管理:数据库在建立、运用和维护时由数据管理系统统一管理、统一控制,以保证数据的安全性、完整性、多用户对数据的并发使用以及发生故障后的系统恢复
    数据库建立和维护功能:数据库初始数据的输入、转换功能,数据库的转储、恢复功能,数据库的重组织功能和性能监视、分析功能等。

    三、数据库系统结构
    1.1模式(概念模式或逻辑模式)
    定义:数据库中全体数据的逻辑结构特征的描述,是所有用户的公用数据库结构。

    特性:

    一个数据库只有一个模式
    模式与应用程序无关,只是数据的一个框架
    1.2子模式(外模式或用户模式)
    定义:数据库用户所见和使用的局部数据的逻辑结构和特征的描述,是用户所用的数据库结构

    特性:

    子模式是模式的子集
    一个数据库有多个子模式,每个用户至少使用一个子模式
    同一个用户可以使用不同的子模式,每个子模式可为不同的用户所用
    1.3内模式(存储模式)
    定义:是数据物理结构和存储方法的描述。它是整个数据库的最低层结构的表示。

    特性:

    一个数据库只有一个内模式,内模式对用户透明
    一个数据库由多种文件组成,如用户数据文件,索引文件及系统文件
    内模式设计直接影响数据库的性能

    以下是开发流程:
    在idea中构建如下几个子模块工程:
    @PostMapping("/doLogin")
    @ApiOperation(value = "一键注册登录接口", notes = "一键注册登录接口", httpMethod = "POST")
    public GraceJSONResult doLogin(HttpServletRequest request,
                                   HttpServletResponse response,
                                   @RequestBody @Valid RegisterLoginBO registerLoginBO,
                                   BindingResult result);
    验证的字段上方可以写一些相关的注解,系统识别后会自动检查
    RegisterLoginBO.java
    public class RegisterLoginBO {

        @NotBlank(message = "手机号不能为空")
        private String mobile;
        @NotBlank(message = "短信验证码不能为空")
        private String smsCode;

        public String getMobile() {
            return mobile;
        }

        public void setMobile(String mobile) {
            this.mobile = mobile;
        }

        public String getSmsCode() {
            return smsCode;
        }

        public void setSmsCode(String smsCode) {
            this.smsCode = smsCode;
        }

        @Override
        public String toString() {
            return "RegisterLoginBO{" +
                    "mobile='" + mobile + '\'' +
                    ", smsCode='" + smsCode + '\'' +
                    '}';
        }
    }

    如果校验有问题,那么可以直接获得并且放回给前端即可。
    BaseController.java
    /**
     * 验证beanBO中的字段错误信息
     * @param result
     * @return
     */
    public Map<String, String> getErrors(BindingResult result) {
        Map<String, String> map = new HashMap<>();
        List<FieldError> errorList = result.getFieldErrors();
        for (FieldError error : errorList) {
            // 发生验证错误所对应的某一个属性
            String errorField = error.getField();
            // 验证错误的信息
            String errorMsg = error.getDefaultMessage();
            map.put(errorField, errorMsg);
        }
        return map;
    }
    一般来说,admin系统不会有主动注册功能,账号都是分配的,那么默认就会存在一个基本账户,这也是预先通过代码生成用户名和密码的。直接手动生成即可:
    <dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
    </dependency>

    同理,查询操作也是类似JPA的操作,再继承Repository后直接使用其内置api即可:
    FriendLinkMngControllerApi.java
    @PostMapping("getFriendLinkList")
    @ApiOperation(value = "查询友情链接列表", notes = "查询友情链接列表", httpMethod = "POST")
    public GraceJSONResult getFriendLinkList();
    首先可以在数据库通过写sql脚本实现查询
    SELECT
    c.id as commentId,
    c.father_id as fatherId,
    c.article_id as articleId,
    c.comment_user_id as commentUserId,
    c.comment_user_nickname as commentUserNickname,
    c.content as content,
    c.create_time as createTime,
    f.comment_user_nickname as quoteUserNickname,
    f.content as quoteContent
    FROM
    comments c
    LEFT JOIN
    comments f
    on
    c.father_id = f.id
    WHERE
    c.article_id = '2006117B57WRZGHH'
    order by
    c.create_time
    desc
    目前我们所搭建的eureka是单机单实例的注册中心,如果挂了,那么整个微服务体系完全不可以,这是不应该的,所以为了实现eureka的高可用,我们可以搭建集群。
    在进行集群构建之前,大家先参照目前的eureka再去构建一个一模一样的工程,可以取名为 springcloud-eureka-cluster。
    为集群中各个eureka节点配置host
    eureka:
      instance:
        hostname: eureka-cluster-${port:7001}    # 集群中每个eureka的名字都要唯一
      # 自定义eureka集群中另外的两个端口号
      other-node-port2: ${p2:7002}
      other-node-port3: ${p3:7003}
      client:
    #    register-with-eureka: false
    #    fetch-registry: false
        service-url:
          # 集群中的每个eureka单实例,都需要相互注册到其他的节点,在此填入集群中其他eureka的地址进行相互注册
          defaultZone: http://eureka-cluster-${eureka.other-node-port2}:${eureka.other-node-port2}/eureka/,http://eureka-cluster-${eureka.other-node-port3}:${eureka.other-node-port3}/eureka/
    我们自己测试的时候时间可以设置为10秒内有10次,我认定非法请求,直接限制这个ip访问15秒,15秒后释放。(像有的网站会出现二维码让你扫描通过,或者手机验证码或者人机交互判断你当前是否是人还是机器,因为有可能是爬虫请求)
    开发步骤:
    首先在yml中设置基本参数:
    @Override
    public Object run() throws ZuulException {
        System.out.println("执行【IP黑名单】Zuul过滤器...");

        // 获得上下文对象requestContext
        RequestContext requestContext = RequestContext.getCurrentContext();
        HttpServletRequest request = requestContext.getRequest();

        // 获得ip
        String ip = IPUtil.getRequestIp(request);

        /**
         * 需求:
         * 判断ip在10秒内请求的次数是否超过10次,
         * 如果超过,则限制访问15秒,15秒过后再放行
         */
        final String ipRedisKey = "zuul-ip:" + ip;
        final String ipRedisLimitKey = "zuul-ip-limit:" + ip;

        // 获得剩余的限制时间
        long limitLeftTime = redis.ttl(ipRedisLimitKey);
        // 如果剩余时间还存在,说明这个ip不能访问,继续等待
        if (limitLeftTime > 0) {
            stopRequest(requestContext);
            return null;
        }

        // 在redis中累加ip的请求访问次数
        long requestCounts = redis.increment(ipRedisKey, 1);

        // 从0开始计算请求次数,初期访问为1,则设置过期时间,也就是连续请求的间隔时间
        if (requestCounts == 1) {
            redis.expire(ipRedisKey, timeInterval);
        }

        // 如果还能取得到请求次数,说明用户连续请求的次数落在10秒内
        // 一旦请求次数超过了连续访问的次数,则需要限制这个ip了
        if (requestCounts > continueCounts) {
            // 限制ip访问一段时间
            redis.set(ipRedisLimitKey, ipRedisLimitKey, limitTimes);

            stopRequest(requestContext);
        }

        return null;
    }

    private void stopRequest(RequestContext requestContext){
        // 停止继续向下路由,禁止请求通信
        requestContext.setSendZuulResponse(false);
        requestContext.setResponseStatusCode(200);
        String result = JsonUtils.objectToJson(
                GraceJSONResult.errorCustom(
                        ResponseStatusEnum.SYSTEM_ERROR_BLACK_IP));
        requestContext.setResponseBody(result);
        requestContext.getResponse().setCharacterEncoding("utf-8");
        requestContext.getResponse().setContentType(MediaType.APPLICATION_JSON_VALUE);
    }
    上面这些都是通过不同key要执行多次才能得到结果,一般来说我们会使用es的aggs功能做聚合统计,会更好。
    通过一个脚本来统计男女数量:
    POST http://192.168.1.203:9200/fans/_doc/_search
    {
        "size": 0,
        "query":{
            "match":{
                "writerId":"201116760SMSZT2W"
            }
        },
        "aggs": {
            "counts": {
                "terms": {
                    "field": "sex"
                }
            }
        }
    }

    以下就是数据库系统开发的整个流程讲解,感谢大家的阅读

  • RadarSensors_ARS308-21_cn数据手册
    RadarSensors_ARS308-21_cn数据手册
  • [完结19章]SpringBoot开发双11商品服务系统
    今天给大家分享一下关于SpringBoot开发双11商品服务系统的整个流程,我将深度还原大厂实习期技术成长全流程,让你收获大厂项目开发全流程与实战经验,具备应对大流量场景问题的解决能力,全面助力提升实习/转正/跳槽表现力与成功率。


    Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。通过这种方式,Spring Boot致力于在蓬勃发展的快速应用开发领域(rapid application development)成为领导者。

    目的
    让大家更容易使用 spring,更容易集成各种常用的中间件、开源软件。
    SpringBoot 基于 Spring 开发, SpringBoot 本身并不提供 Spring 框架的核心特性以及扩展功能,只是用于快速、敏捷地开发新一代基于 Spring 框架的应用程序。
    SpringBoot 不是用来替代 spring 的解决方案,而是和 spring 框架紧密结合提升 spring 开发者体验的工具。

    准备测试数据
    我们先导入准备好的测试数据,这个测试数据是一份商品数据。

    字段包含商品id,name(商品名)
    last_month_sales(最近一个月的销量)
    favorites(收藏数)这几个字段,我们主要是通过商品名来搜索。
    首先我先先创建一个商品索引
    PUT goods
    {
      "settings": {
        "number_of_shards": 1,
        "number_of_replicas": 0
      },
      "mappings": {
        "properties": {
          "id": {
            "type": "keyword",
            "doc_values": false,
            "norms": false,
            "similarity": "boolean"
          },
          "name": {
            "type": "text"
          },
            "price": {
            "type": "double"
          },
          "last_month_sales": {
            "type": "long"
          },
          "favorites": {
            "type": "long"
          },
          "year":{
            "type": "short"
          }
        }
      }
    }
    千里之行,始于足下。想要舒舒服服地使用Spring框架,就要把它的开发环境配置好,这对它好,也对我好。

    1. jdk 的配置       
    使用 IDEA 进行开发,在 IDEA 中配置 jdk 的方式很简单,打开 File->Project Structure选择 SDKs。
    在 JDK home path 中选择本地 jdk 的安装目录。
    在 Name 中为 jdk 自定义名字通过以上三步骤,即可导入本地安装的 jdk。如果是使用 STS 或者 eclipse 可以通过两步骤添加:
    window->preference->java->Instralled JRES 来添加本地 jdk。
    window-->preference-->java-->Compiler 选择 jre,和 jdk 保持一致。
    PUT test_index/_doc/1
    {
      "string_field":"imooc",
      "int_field": 100,
      "float_field":3.14,
      "bool_field":true,
      "date_field":"2022/03/16",
      "obj_field":{"key1":"value1","key2":100},
      "array_field1":[100,3.14],
      "array_field2":[100,"200"],
      "array_field3":["2022/03/16","100"],
      "array_field4":["100","2022/03/16"],
      "null_field":null
      }
      创建 Spring Boot 项目后需要进行 maven 配置。打开 File->settings,搜索 maven,配置一下本地的 maven 信息。在 Maven home directory 中选择本地 Maven 的安装路径;在 User settings file 中选择本地 Maven 的配置文件所在路径。在配置文件中配置一下国内阿里的镜像,这样在下载 maven 依赖时,速度会变得很快。
    {
      "test_index" : {
        "mappings" : {
          "properties" : {
            "array_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            },
            "bool_field" : {
              "type" : "boolean"
            },
            "date_field" : {
              "type" : "date",
              "format" : "yyyy/MM/dd HH:mm:ss||yyyy/MM/dd||epoch_millis"
            },
            "float_field" : {
              "type" : "float"
            },
            "int_field" : {
              "type" : "long"
            },
            "obj_field" : {
              "properties" : {
                "key1" : {
                  "type" : "text",
                  "fields" : {
                    "keyword" : {
                      "type" : "keyword",
                      "ignore_above" : 256
                    }
                  }
                },
                "key2" : {
                  "type" : "long"
                }
              }
            },
            "string_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            }
          }
        }
      }
    }

    从以上结果中,我们可以看到 Spring Boot 通过MVN方式自动为项目配置了对应的 springframework、logging、jackson 以及 Tomcat 等依赖,而这些正是我们在开发 Web 项目时所需要的。

    那么细心的同学可能会发现一个问题,即在以上 pom.xml 的配置中,引入依赖 spring-boot-starter-web 时,并没有指明其版本(version),但在依赖列表中,我们却看到所有的依赖都具有版本信息,那么这些版本信息是在哪里控制的呢? 
    {
      "_index" : "test_index",
      "_id" : "1",
      "_version" : 1,
      "_seq_no" : 0,
      "_primary_term" : 1,
      "found" : true,
      "_source" : {
        "string_field" : "Chan",
        "int_field" : 100,
        "int_string_field" : "100",
        "float_field" : 3.14,
        "bool_field" : true,
        "date_field" : "2022/03/16",
        "obj_field" : {
          "key1" : "value1",
          "key2" : 100
        },
        "array_field" : [
          "value1",
          "100"
        ],
        "null_field" : null
      }
    }
    spring-boot-starter-parent 是所有 Spring Boot 项目的父级依赖,它被称为 Spring Boot 的版本管理中心,可以对项目内的部分常用依赖进行统一管理。

    <parent>    

            <groupId>org.springframework.boot</groupId>    

            <artifactId>spring-boot-starter-parent</artifactId>    

            <version>2.5.6</version>    

            <relativePath/> 

    </parent>

    Spring Boot 项目可以通过继承 spring-boot-starter-parent 来获得一些缺省的配置内容,它主要提供了以下特性:

    默认 JDK 版本(Java 8)

    默认字符集(UTF-8)

    依赖管理功能

    资源过滤

    默认插件配置识别 

    application.properties 或 application.yml 类型的配置文件
    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":false 
      }
    }
    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":"strict" 
      }
    }


    POST test_index/_doc/2
    {
      "field1":{
       "field2":"imooc ES" 
      }
    }

    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    以下就是本文的全部内容,感谢大家观看
  • ECG前置电路设计
    TI出的一个经验文档,讲的很不错
  • 首个基于Transformer的分割检测+视觉大模型视频课程(附源码+课件)
    众所周知,视觉系统对于理解和推理视觉场景的组成特性至关重要。这个领域的挑战在于对象之间的复杂关系、位置、歧义、以及现实环境中的变化等。作为人类,我们可以很轻松地借助各种模态,包括但不仅限于视觉、语言、声音等来理解和感知这个世界。现如今,随着 Transformer 等关键技术的提出,以往看似独立的各个方向也逐渐紧密地联结到一起,组成了“多模态”的概念。

    多功能
    通过引入灵活的提示引擎,包括点、框、涂鸦 (scribbles)、掩模、文本和另一幅图像的相关区域,实现多功能性;
    可组合
    通过学习联合视觉-语义空间,为视觉和文本提示组合实时查询,实现组合性,如图1所示;
    可交互
    通过结合可学习的记忆提示进行交互,实现通过掩模 引导的交叉注意力保留对话历史信息;
    语义感知
    通过使用文本编码器对文本查询和掩模标签进行编码,实现面向开放词汇分割的语义感知。

    超大规模视觉通用感知模型由超大规模图像、文本主干网络以及多任务兼容解码网络组成,它基于海量的图像和文本数据构成的大规模数据集进行预训练,用于处理多个不同的图像、图像-文本任务。此外,借助知识迁移技术能够实现业务侧小模型部署。

    超大规模视觉通用感知模型面临的挑战:
    (1)网络参数量庞大,通常超十亿参数,训练稳定性、收敛性、过拟合等问题相较于小网络挑战大很多。
    (2)原始数据集包含数十亿异质低质量图片与海量文本,多步训练以利用异质的多模态多任务数据,流程复杂,存在灾难性遗忘,难以定位精度等问题。
    (3)实验成本高,通常需要上千块GPU并行训练数周,需要研究者有敏锐的分析能力和扎实的知识基础。
    (4)工程挑战多,海量数据的吞吐,大型GPU集群上的并行算法,超大参数量模型的内存管理。

    提示工程
    大多数视觉数据集由图像和相应文本标签组成,为了利用视觉语言模型处理视觉数据集,一些工作已经利用了基于模版的提示工程,
    text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]  
    text_tokens = clip.tokenize(text_descriptions).cuda()

    除了此类大型视觉语言基础模型外,一些研究工作也致力于开发可以通过视觉输入提示的大型基础模型。例如,最近 META 推出的 SAM 能够执行与类别无关的分割,给定图像和视觉提示(如框、点或蒙版),指定要在图像中分割的内容。这样的模型可以轻松适应特定的下游任务,如医学图像分割、视频对象分割、机器人技术和遥感等

    从模型训练、模型分发、模型商业化,美图体系化地同创作者和开发者共建模型生态:

    (1)模型训练:提供二次训练能力,并持续不断地为创作者提供服务,包括培训、社区和模型创作大赛。

    (2)模型分发:创作者和开发者共建的模型可以在美图的产品内进行分发,在分发过程中持续优化模型。

    (3)模型商业化:行业客户可通过 MiracleVision 的 API 和 SDK 进行商业使用,创作者和开发者通过商业合作获得经济收益。
    通用视觉-语言学习的基础模型
    UNITER:结合了生成(例如掩码语言建模和掩码区域建模)和对比(例如图像文本匹配和单词区域对齐)目标的方法,适用于异构的视觉-语言任务。
    Pixel2Seqv2:将四个核心视觉任务统一为像素到序列的接口,使用编码器-解码器架构进行训练。
    Vision-Language:使用像 BART 或 T5 等预训练的编码器-解码器语言模型来学习不同的计算机视觉任务。
    模型整体结构上,抛弃了CNN,将 BERT 原版的 Transformer 开箱即用地迁移到分类任务上面,在使用大规模训练集的进行训练时,取得了极好的效果。
    同时,在大规模数据集上预训练好的模型,在迁移到中等数据集或小数据集的分类任务上以后,也能取得比CNN更优的性能。
    模型整体结构如下图所示,完全使用原始 BERT 的 Transformer 结构,主要是对图片转换成类似 token 的处理,原文引入了一个 patch 的概念,首先把图像划分为一个个的 patch,然后将 patch 映射成一个 embedding,即图中的 linear projection 层,将输入转换为类似 BERT 的输入结构,然后加上 position embedding,这里的 position 是1D的,最后加上一个learnable classification token 放在序列的前面,classification由 MLP 完成。

    这里我们用 RAM 提取了图像的语义标签,再通过将标签输入到 Grounding-DINO 中进行开放世界检测,最后再通过将检测作为 SAM 的提示分割一切。目前视觉基础大模型可以粗略的归为三类:
    textually prompted models, e.g., contrastive, generative, hybrid, and conversational;
    visually prompted models, e.g., SAM, SegGPT;
    heterogeneous modalities-based models, e.g., ImageBind, Valley.

    CoCa 通过将所有标签简单地视为文本,对 web-scale alt-text 和 annotated images 进行了从头开始端到端的预训练,无缝地统一了表示学习的自然 语言 监督。因此,CoCa 在广泛的下游任务上实现了最先进的性能,零样本传输或最小的任务特定适应, 跨越视觉识别(ImageNet,Kinetics-400/600/700,Moments-in-Time )、跨模式检索(MSCOCO、Flickr30K、MSR-VTT)、 多模式理解(VQA、SNLI-VE、NLVR2)和图像字幕(MSCOCO、NoCaps)。在 ImageNet 分类中,CoCa 获得了 86.3% 的 zero-shot top-1 准确率, frozen encoder and finetune classifier 是 90.6%,finetune encoder 可以到 91.0%。

    截止目前国内外已经发布了许多包括 NLP, CV 和 多模态在内的大规模模型,但是这些模型在应用落地上还是有待进一步探究的,目前应用落地较好的有华为 的盘古,在电网和金融圈都有应用;智源的悟道系列在诗词图文上都有广泛应用,可以帮助学生看图写作,根据文字生成插图等;百度的文心也发布了在金融方 面的应用。但截止目前为止大模型在实际中的应用还不是很理想,大模型发展的初衷是使用一个预训练好的大模型代替一堆小作坊似的根据不同任务训练的小模 型,通过模型蒸馏知识迁移等技术在小模型上使用少量数据集达到超过原来小模型性能的目标。CV 大模型在应用上的一个难点是与实际应用相结合,目前社会中 用的较多的视觉相关的深度学习模型主要包括物体检测,人脸识别以及缺陷检测(部分)相比 NLP 模型在实际中的使用少很多,因此将 CV 模型与实际生产相 结合发现更多的应用场景很关键。另外一个 CV 大模型应用的难点就是如何快速高效的使用蒸馏和知识迁移技术提升下游任务的性能,这两点难题的解决在 CV 大模型的实际应用中都刻不容缓。

    总结起来,将大模型应用于更高分辨率的下游视觉任务具有以下好处:提高感知能力、改善定位精度、提升语义理解、改善细节保留和边缘清晰度、增加鲁棒性和泛化能力,以及推动研究进展。这些好处使得大模型在处理高分辨率图像时能够获得更准确、更细致和更真实的结果。随着深度学习和计算资源的不断发展,我们可以期待更先进的大模型和相关技术的出现,进一步推动计算机视觉在高分辨率图像任务中的应用和突破

  • 托马斯微积分第十版中文
    电子书为扫描版本,自己手动添加书签作为目录供参考
  • RadarSensors_ARS408-21_cn数据手册
    RadarSensors_ARS408-21_cn数据手册
  • 注释EN55014-1
    注释EN55014-1
  • 特斯拉电路图.rar
    特斯拉电路图,欢迎大家下载
  • 12、如何挑选立式磁棒电感厂家
    12、如何挑选立式磁棒电感厂家
  • 风力发电机组机结构与原理-2018年-赵万清
    风力发电机组机结构与原理,中国电力出版社,PDF版本。
  • 15、贴片叠层电感应用测试中不良率高的原因
    15、贴片叠层电感应用测试中不良率高的原因
  • 印刷部分 这本书印刷和普通书籍不太一样,类似笔记本的手写体印刷和笔记的网格,有亲近感和新鲜感内容部分 分为通信工程 ;传感器工程;磁传感器工程;太阳电池功能几大部分通信电路是一种用于传输信息的电子电路,可以用于无线通信、有线通信和网络通信等各种通信系统中。传感器电路则是用于感知和测量环境参数的电路,可以探测光、温度、压力、湿度、运动等各种物理量。在学习通信电路方面,可能会接触到模拟通信电路和数字通信电路。模拟通信电路主要涉及模拟信号的传输和处理,如调制解调、信号放大、滤波等。数字通信电路则涉及数
    陇南有只大花猫 2023-11-30 19:01 198浏览
  • 高低温探针台是一种用于材料科学、物理、化学等领域的实验设备,主要用于在高温和低温环境下对材料进行各种实验和研究。下面是高低温探针台的工作原理。工作原理是将样品放置在加热和冷却组件上,然后使用各种测量仪器对其进行实验和测量。具体来说,其工作流程如下:将样品放置在加热和冷却组件上;启动加热系统,将样品加热到所需的温度;启动制冷系统,将冷却组件降温到所需的温度;通过各种测量仪器对样品进行实验和测量;记录实验数据并进行分析和处理;结束实验后,关闭加热和制冷系统,并解除真空状态,取出样品。总之,高低温探针
    锦正茂科技 2023-12-01 14:50 101浏览
  • 在电力系统中,过电压保护器是一种重要的设备,它对电力设备的安全运行具有重要的作用。下面我们来了解一下过电压保护器的基本结构。过电压保护器通常由三个主要部分组成:间隙、非线性元件和触发器。1. 间隙:间隙是过电压保护器的基本结构之一,它是由两个金属电极组成的,通常采用球形或棒形结构。间隙的间距通常在几毫米到几厘米之间,它能够承受一定的电压,并在过电压条件下进行放电。2. 非线性元件:非线性元件是过电压保护器的另一个重要组成部分。它是一种特殊的电阻器,能够在高电压下呈现出非线性的特性。当电压超过一定
    保定众邦电气 2023-11-30 14:49 173浏览
  •     按照 IPC术语,连接盘/Land 是指一块导体,通常用于连接和/或固定元器件的导电部分。    为了增强孔的机械强度,所有的金属化孔或者镀覆孔,在穿过每一层铜箔时,都应该有连接盘,连接盘的形状不限。前面提过的孔环也是连接盘的一种形式。在允许的条件下,孔环和连接盘的尺寸都要尽量大一些。    前面提到过,铜层图案(连接盘)和孔是在不同的工序制作的。由于加工公差的存在,用常见的圆形连接盘和圆孔来说,并不能保证孔和连接盘保持精确的同
    电子知识打边炉 2023-11-30 21:32 146浏览
  • 前言 在网络部署之后和业务开展之前,运营商迫切希望了解当前网络的性能状态,以便为商业规划和业务推广提供必要的基础数据支持。因此,高可靠性和高精确度的性能测试方法对于运营商评判网络性能的优劣,显得尤为重要,而RFC 2544等传统测试标准已不足于鉴定当今的服务等级协议(SLA)。SLA是服务提供商(如ISP)及其最终用户之间的协议,它规定以太网服务的开通或验证必须进行测量,且必须达到SLA的规范要求。目前,对以太网服务进行测试和故障诊断的最佳选择无疑是ITU-T Y.1564标准。 &
    信而泰市场部 2023-11-30 15:06 90浏览
  •    电源连接器的插针遭受损坏的情况非常普遍,这种故障会让连接器的电流传输受到影响,进而影响设备的正常使用,那是什么因素导致电源连接器的插针遭到损坏呢?下面Amass将为您分析其中的原因。   1、应用环境高温 1. 在高温环境下,电源连接器插针易受腐蚀影响,形成氧化层,损失接触压力,甚至可能发生接头烧损情况。对于这种环境,电源连接器需要具备耐高温性能,不仅需满足环境温度要求,还须考虑其在工作状态下的热量散发。  
    艾迈斯电子 2023-11-30 16:33 129浏览
  • 作者:Shawn Prestridge,IAR资深现场应用工程师 / 美国FAE团队负责人 安全一直都是一个非常热门的话题,似乎每周都会听到这样的消息:某某公司如何被入侵,数百万用户的数据被泄露。 我们看到这么多的安全问题,部分原因在于我们对待安全的方式:安全性通常被认为是事后考虑的问题,是在开发结束时才添加到设备上的东西。然而,复杂的系统,尤其是嵌入式系统,有一个很大的攻击面,这让攻击者有机可乘,能够在“盔甲”上找到破绽。如果你去研究大部分黑客试图入侵系统的方式,你很快就会发现,在他们的武
    电子科技圈 2023-11-30 14:43 121浏览
  • 随着汽车电子进入电动化+智能网联的时代,新能源、车联网、智能化、电动化四个领域带来了CAN数据的需求,企业车队管理需要数据,汽车运营需要数据,改装、解码、匹配工具打造需要数据,现在就连简单的LED汽车照明控制,也需要匹配数据。这一切,逃脱不了CAN、LIN、SENT、BSD、MOST各种协议下,不同ECU控制单元在不同年份,不同款式下的数据,可以这么说,在新能源这个前提下,我们要做的工作和要做的事情可能要更为复杂、多变。 前日,我拿出一份13年左右丰田的CAN协议,里边包括车灯控制、车
    lauguo2013 2023-11-30 15:45 109浏览
  • 听力危机不可不慎,助听器市场的发展概况根据世界卫生组织WHO于2021年所发布的世界听力报告(World report on hearing)统计,全球目前有20%左右的听损人口;其中「轻度」与「中度」听损人口就占了大约15亿人左右。台湾方面,根据2021年卫生福利部统计处的数据显示,台湾则约有12万人有听力损失的问题,其中更有高达56% (约71,543人)确诊为轻度听损。足以看出听力受损问题已逐渐成为全球新兴的健康议题。听力损失的成因及轻重程度因人而异,但无论如何,或多或少都会影响到我们的日
    百佳泰测试实验室 2023-11-30 17:26 118浏览
  • 非接触精密洁净设备在锂电池领域有广泛的应用,主要用于生产制造过程中的Roll to Roll及sliting工艺、电芯预处理等环节。针对卷板、薄膜、膜片制造工艺中的大宽幅、裁切后边部处理再清洁、除异物、毛刺等需求,非接触精密洁净设备通过高旋轴与特制气嘴的优化排列,可满足现有干燥炉、再复合、精度提升等新工艺中的洁净度要求。具体的应用环节如下:锂电池生产过程中的Roll to Roll工艺和sliting工艺,非接触精密洁净设备通过高精度的洁净环境和控制,保证了锂电池的制造质量和安全性。电芯预处理过
    SHLZ 2023-11-30 11:49 146浏览
  • Achronix推出基于FPGA的加速自动语音识别解决方案 提供超低延迟和极低错误率(WER)的实时流式语音转文本解决方案,可同时运行超过1000个并发语音流2023年11月——高性能FPGA芯片和嵌入式FPGA(eFPGA IP)领域的领先企业Achronix半导体公司日前自豪地宣布:正式推出Achronix与Myrtle.ai合作的最新创新——基于Speedster7t FPGA的自动语音识别(ASR)加速方案。这一变革性的解决方案,实现了高精度和快速响应,可将超过1000个并发的实时
    电子科技圈 2023-11-30 11:52 157浏览
  •    本文介绍在ALPS平台上进行SSL测试的内容和方法   什么是SSL SSL全称是Secure Sockets Layer,指安全套接字协议,为基于TCP的应用层协议提供安全连接;SSL介于TCP/IP协议栈的第四层和第五层之间,广泛用于电子商务、网上银行等。 SSL协议有三个版本,其中SSL2.0和3.0曾被广泛使用,其中SSLv3.0自1996提出并得到大规模应用成为了事实上的标准,在2015年才被弃用。1999年,IETF收纳了SSLv3.0并
    信而泰市场部 2023-11-30 15:08 102浏览
  • By Toradex胡珊逢 简介 双屏显示在显示设备中有着广泛的应用,可以面向不同群体展示特定内容。文章接下来将使用 Verdin iMX8M Plus 的 Arm 计算机模块演示如何方便地在 Toradex 的 Linux BSP 上实现在两个屏幕上显示独立的 Qt 应用。 硬件介绍 软件配置 Verdin iMX8M Plus 模块使用 Toradex Multimedia Reference Image V6.4.0 版本,其包含 Qt5.15 相关运行环境。默认系统中已经使
    hai.qin_651820742 2023-12-01 11:53 117浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦