Linux驱动模块内存精简

Linux阅码场 2023-09-25 08:03

Linux 驱动模块可以独立的编译成 .ko 文件,虽然大小一般只有几 MB,但对总内存只有几十 MB 的小型 Linux 系统来说,常常也是一个非常值得优化的点。本文以一个实际例子,详细描述 .ko 内存精简优化的具体过程。

1. Strip 文件

因为 .ko 文件是一个标准的 ELF 文件,通常我们首先会想到使用 strip 命令来精简文件大小。strip .ko 有以下几种选项:

  1. strip --strip-all test.ko // strip 掉所有的调试段,ko 文件体积减少很多,ko 不能正常 insmod

  2. strip --strip-debug test.ko // strip 掉 debug 段,ko 文件体积减少不多,ko 可以正常 insmod

  3. strip --strip-unneeded test.ko // strip 掉 和动态重定位无关的段,ko 文件体积减少不多,ko 可以正常 insmod

.ko 文件具体的体积变化:

  1. 6978208 origin-test.ko* // no strip

  2. 1984856 strip-all-test.ko* // strip --strip-all

  3. 6884544 strip-debug-test.ko* // strip --strip-debug

  4. 6830704 strip-unneeded-test.ko* // strip --strip-unneeded

可以看到在保存 .ko 能正常使用的前提下, strip 命令对 .ko 文件并不能减少多大的体积。而且一通操作下来, .ko 文件中的关键数据 text/data/bss 段的体积没有任何变化:

  1. $ size *.ko

  2. text data bss dec hex filename

  3. 1697671 275791 28367 2001829 1e8ba5 origin-test.ko

  4. 1697671 275791 28367 2001829 1e8ba5 strip-all-test.ko

  5. 1697671 275791 28367 2001829 1e8ba5 strip-debug-test.ko

  6. 1697671 275791 28367 2001829 1e8ba5 strip-unneeded-test.ko

  • Question 1: strip 命令是否还有命令能实现更多的精简? strip 的本质是什么,具体 strip 掉了哪些东西?

我们通过读取 ELF 文件的 section 信息来比较 strip 前后的差异:

  1. $ readelf -S origin-test.ko

  2. There are 48 section headers, starting at offset 0x6a6ea0:

  3. Section Headers:

  4. [Nr] Name Type Address Offset

  5. Size EntSize Flags Link Info Align

  6. [ 0] NULL 0000000000000000 00000000

  7. 0000000000000000 0000000000000000 0 0 0

  8. [ 1] .note.gnu.build-i NOTE 0000000000000000 00000040

  9. 0000000000000024 0000000000000000 A 0 0 4

  10. [ 2] .note.Linux NOTE 0000000000000000 00000064

  11. 0000000000000018 0000000000000000 A 0 0 4

  12. [ 3] .text PROGBITS 0000000000000000 0000007c

  13. 00000000001393d6 0000000000000000 AX 0 0 2

  14. [ 4] .rela.text RELA 0000000000000000 003b9b90

  15. 00000000002b7550 0000000000000018 I 45 3 8

  16. [ 5] .text.unlikely PROGBITS 0000000000000000 00139452

  17. 0000000000000d74 0000000000000000 AX 0 0 2

  18. [ 6] .rela.text.unlike RELA 0000000000000000 006710e0

  19. 0000000000001950 0000000000000018 I 45 5 8

  20. [ 7] .init.text PROGBITS 0000000000000000 0013a1c6

  21. 000000000000016e 0000000000000000 AX 0 0 2

  22. [ 8] .rela.init.text RELA 0000000000000000 00672a30

  23. ...

  24. $ readelf -S strip-all-test.ko

  25. There are 27 section headers, starting at offset 0x1e4298:

  26. Section Headers:

  27. [Nr] Name Type Address Offset

  28. Size EntSize Flags Link Info Align

  29. [ 0] NULL 0000000000000000 00000000

  30. 0000000000000000 0000000000000000 0 0 0

  31. [ 1] .note.gnu.build-i NOTE 0000000000000000 00000040

  32. 0000000000000024 0000000000000000 A 0 0 4

  33. [ 2] .note.Linux NOTE 0000000000000000 00000064

  34. 0000000000000018 0000000000000000 A 0 0 4

  35. [ 3] .text PROGBITS 0000000000000000 0000007c

  36. 00000000001393d6 0000000000000000 AX 0 0 2

  37. [ 4] .text.unlikely PROGBITS 0000000000000000 00139452

  38. 0000000000000d74 0000000000000000 AX 0 0 2

  39. [ 5] .init.text PROGBITS 0000000000000000 0013a1c6

  40. 000000000000016e 0000000000000000 AX 0 0 2

  41. ...

从信息上看 strip 主要删除了 FlagsISections,而 FlagsASections 是不能被删除的。关于 SectionsFlags 的定义在 Readelf 命令的最后面有详细描述:

  1. Key to Flags:

  2. W (write), A (alloc), X (execute), M (merge), S (strings), I (info),

  3. L (link order), O (extra OS processing required), G (group), T (TLS),

  4. C (compressed), x (unknown), o (OS specific), E (exclude),

  5. p (processor specific)

另外还发现,对 .ko 文件来说 .rela. 开头的 Sections 是不能被删除的, insmod 时需要这些信息。例如 .rela.text 占用了很大的体积,但是不能直接粗暴的直接 strip 掉。

  • Question 2:对于 .ko 文件中 Flags 为 I 的 Sections 在模块 insmod 以后是否需要占据内存?

内核代码中对 .ko 文件 insmod 动态加载时的主流程:

  1. SYSCALL_DEFINE3(finit_module) / SYSCALL_DEFINE3(init_module)

  2. |→ load_module()

  3. |→ layout_and_allocate()

  4. | |→ setup_load_info() // info->index.mod = section ".gnu.linkonce.this_module"

  5. | |

  6. | |→ layout_sections() // 解析 ko ELF 文件,统计需要加载到内存中的 section

  7. | | // 累计长度到 mod->core_layout.size 和 mod->init_layout.size

  8. | |

  9. | |→ layout_symtab() // 解析 ko ELF 文件,统计需要加载到内存中的符号表

  10. | | // 累计长度到 mod->core_layout.size

  11. | |

  12. | |→ move_module() // 根据 mod->core_layout.size 和 mod->init_layout.size 的长度

  13. | // 使用 vmalloc 分配空间,并且拷贝对应的 section 到内存

  14. |

  15. |→ apply_relocations() // 对加载到内存的 section 做重定位处理

  16. |

  17. |→ do_init_module() // 执行驱动模块的 module_init() 函数,完成后释放 mod->init_layout.size 内存

分析具体的代码细节,发现只有带 ALLOC 属性(即 FlagsA)的 section 才会在模块加载时统计并拷贝进内存:

  1. static void layout_sections(struct module *mod, struct load_info *info)

  2. {

  3. /* (1) 只识别带 SHF_ALLOC 的 section */

  4. static unsigned long const masks[][2] = {

  5. /* NOTE: all executable code must be the first section

  6. * in this array; otherwise modify the text_size

  7. * finder in the two loops below */

  8. { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },

  9. { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },

  10. { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },

  11. { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },

  12. { ARCH_SHF_SMALL | SHF_ALLOC, 0 }

  13. };

  14. unsigned int m, i;

  15. for (i = 0; i < info->hdr->e_shnum; i++)

  16. info->sechdrs[i].sh_entsize = ~0UL;

  17. /* (2) 遍历 ko 文件的 section,根据上述标志来统计

  18. 把 ALLOC 类型的 section 统计进 mod->core_layout.size

  19. */

  20. pr_debug("Core section allocation order:\n");

  21. for (m = 0; m < ARRAY_SIZE(masks); ++m) {

  22. for (i = 0; i < info->hdr->e_shnum; ++i) {

  23. Elf_Shdr *s = &info->sechdrs[i];

  24. const char *sname = info->secstrings + s->sh_name;

  25. if ((s->sh_flags & masks[m][0]) != masks[m][0]

  26. || (s->sh_flags & masks[m][1])

  27. || s->sh_entsize != ~0UL

  28. || module_init_section(sname))

  29. continue;

  30. s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);

  31. pr_debug("\t%s\n", sname);

  32. }

  33. }

  34. /* (3) 遍历 ko 文件的 section,根据上述标志来统计

  35. 把 ALLOC 类型的并且名字以 '.init' 开头的 section 统计进 mod->init_layout.size

  36. */

  37. pr_debug("Init section allocation order:\n");

  38. for (m = 0; m < ARRAY_SIZE(masks); ++m) {

  39. for (i = 0; i < info->hdr->e_shnum; ++i) {

  40. Elf_Shdr *s = &info->sechdrs[i];

  41. const char *sname = info->secstrings + s->sh_name;

  42. if ((s->sh_flags & masks[m][0]) != masks[m][0]

  43. || (s->sh_flags & masks[m][1])

  44. || s->sh_entsize != ~0UL

  45. || !module_init_section(sname))

  46. continue;

  47. s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)

  48. | INIT_OFFSET_MASK);

  49. pr_debug("\t%s\n", sname);

  50. }

  51. }

  52. }

FlagsI 的 section 只会在 apply_relocations() 重定位时提供信息,这部分 section 不会在内存中常驻。

结论:strip 操作 .ko 文件只会精简掉少量 I 的 section, .ko 文件少量减小,但是对动态加载后的内存占用毫无影响。

2. 运行时内存占用

但是生活还得继续,优化还得想办法。我们仔细分析关键数据 text/data/bss 段在模块加载过程中的内存占用。

加载前:

  1. $ size test.ko

  2. text data bss dec hex filename

  3. 1697671 275791 28367 2001829 1e8ba5 test.ko

模块 insmod 后的内存占用,因为是通过 vmalloc() 分配的,我们可以通过 vmallocinfo 查看内存占用情况:

  1. # cat /sys/module/test/coresize

  2. 4203425

  3. # cat /sys/module/test/initsize

  4. 0

  5. # cat /proc/vmallocinfo

  6. // core_layout.size 占用 4.2 M 内存

  7. 0x00000000fd4ec521-0x000000007ff17966 4210688 load_module+0x1b86/0x1c8e pages=1027 vmalloc vpages

  8. 0x000000007ff17966-0x000000004e29ad2e 16384 load_module+0x1b86/0x1c8e pages=3 vmalloc

可以看到,加载前 test.kotext/data/bss 段的总长为 2 M 左右,但是模块加载后总共占用了 4.2 M 内存。

  • Question 3:为什么模块加载后会有多出的内存占用?

我们在内核代码中加上调试信息,跟踪 mod->core_layout.size 的变化情况,终于找到了关键所在:

  1. SYSCALL_DEFINE3(finit_module) / SYSCALL_DEFINE3(init_module)

  2. |→ load_module()

  3. |→ layout_and_allocate()

  4. | |→ setup_load_info() // mod->core_layout.size = 0x0.

  5. | |

  6. | |→ layout_sections() // mod->core_layout.size = 0x1f8390

  7. | |

  8. | |→ layout_symtab() // mod->core_layout.size = 0x4023a1.

  9. | |

  10. | |→ move_module() // 根据 mod->core_layout.size 和 mod->init_layout.size 的长度

可以看到是在 layout_symtab() 函数中增大了多余的长度, layout_symtab() 函数在 CONFIG_KALLSYMS 使能的情况下才有效,存储的驱动模块的符号表。

一般情况下我们并不需要模块符号表,可以关闭内核的 CONFIG_KALLSYMS 选项来查看内存的占用情况:

  1. # cat /sys/module/test/coresize

  2. 2092876

  3. # cat /sys/module/test/initsize

  4. 0

  5. # cat /proc/vmallocinfo

  6. // core_layout.size 占用 2.0 M 内存

  7. 0x000000009e1c62e8-0x000000001024ef17 2097152 0xffffffff8006f3de pages=511 vmalloc

  8. 0x000000004070c817-0x00000000cc1b6736 28672 0xffffffff41534922 pages=6 vmalloc

多余的 2.2 M 内存被完美的精简下来。

但是这种方法也只能减少 .ko 的静态内存占用,驱动动态分配的内存只能分析代码逻辑去优化。

结论:关闭 CONFIG_KALLSYMS 选项可以精简 .ko 模块符号表的内存占用,精简收益还是不错的。


Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论 (0)
  • 安科瑞 ASCB1系列智能微型断路器样本
    ASCB1 系列智能微型断路器是安科瑞电气股份有限公司全新推出的智慧用电产品,产品由智能微型断路器与智能网关两部分组成,可用于对用电线路的关键电气因素,如电压、电流、功率、温度、漏电、能耗等进行实时监测,具有远程操控、预警保护、短路保护、电能计量统计、故障定位等功能,应用于户内建筑物及类似场所的工业、商业、民用建筑及基础设施等领域低压终端配电网络。
  • 托马斯微积分第十版中文
    电子书为扫描版本,自己手动添加书签作为目录供参考
  • [完结19章]SpringBoot开发双11商品服务系统教程下载
    如何使用SpringBoot开发一款关于双11商品服务的系统?今天就给大家说道说道,希望对大家的学习有所帮助!
    1.什么是SpringBoot?
    Spring 的诞⽣是为了简化 Java 程序的开发的,⽽ Spring Boot 的诞⽣是为了简化 Spring 程序开发的。
    Spring Boot是由Pivotal团队提供的基于Spring的框架,该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。Spring Boot集成了绝大部分目前流行的开发框架,就像Maven集成了所有的JAR包一样,Spring Boot集成了几乎所有的框架,使得开发者能快速搭建Spring项目。
    2.SpringBoot的优点
    快速集成框架,Spring Boot 提供了启动添加依赖的功能,⽤于秒级集成各种框架。
    内置运⾏容器,⽆需配置 Tomcat 等 Web 容器,直接运⾏和部署程序。
    快速部署项⽬,⽆需外部容器即可启动并运⾏项⽬。
    可以完全抛弃繁琐的 XML,使⽤注解和配置的⽅式进⾏开发。
    ⽀持更多的监控的指标,可以更好的了解项⽬的运⾏情况

    后端配置
    1.1创建Springboot工程
    打开idea->file->new->project
    选择spring Initializer进行配置,java版本选择8,点击next
    - internal 应用代码
        - controllers 控制器模块
          - admin 后端控制器
          - front 前端控制器
        - listen redis监听器
        - models 模型模块
        - service 服务模块
          - product_serive 商品服务
          - wechat_menu_serive 微信公众号菜单服务
          ......
    - conf 公共配置
      -config.yml yml配置文件
      -config.go 配置解析,转化成对应的结构体
      
    - middleware 中间件
        - AuthCheck.go  jwt接口权限校验
    - cors.go 跨域处理
    ......
    - pkg 程序应用包
      - app
      - base
      - casbin
      - jwt
      - qrcode
      - wechat
      .....
    - routere 路由
    - logs 日志存放
    - runtime 资源目录
    首先,我仔细分析了需求,并且根据业务逻辑设计了合适的接口。
    对于多表关联查询,我使用了MyBatis的注解来编写SQL语句,并通过@One和@Many等注解来实现结果集的映射。
    对于数据分页,我使用了MyBatis-Plus提供的Page对象,并结合相关方法来实现数据分页查询。
    2. 上课中的优秀项目
    在课堂上,我完成了一个优秀的项目,主要是学生实体类的增删改查功能。通过这个项目,我巩固了对Spring Boot框架的理解和掌握。
    具体实现如下:
    //初始化redis
    err := cache.InitRedis(cache.DefaultRedisClient, &redis.Options{
    Addr:        global.CONFIG.Redis.Host,
    Password:    global.CONFIG.Redis.Password,
    IdleTimeout: global.CONFIG.Redis.IdleTimeout,
    }, nil)
    if err != nil {
    if err != nil {
    global.LOG.Error("InitRedis error ", err, "client", cache.DefaultRedisClient)
    panic(err)
    }
    panic(err)
    }

    //初始化mysql
    err = db.InitMysqlClient(db.DefaultClient, global.CONFIG.Database.User,
    global.CONFIG.Database.Password, global.CONFIG.Database.Host,
    global.CONFIG.Database.Name)
    if err != nil {
    global.LOG.Error("InitMysqlClient error ", err, "client", db.DefaultClient)
    panic(err)
    }
    global.Db = db.GetMysqlClient(db.DefaultClient).DB

    开发步骤
    SpringBoot 开发起来特别简单,分为如下几步:
    创建新模块,选择Spring初始化,并配置模块相关基础信息
    选择当前模块需要使用的技术集
    开发控制器类
    运行自动生成的Application类
    知道了 SpringBoot 的开发步骤后,接下来我们进行具体的操作
    shutdown.NewHook().Close(
    //关闭http server
    func() {
    ctx, cancel := context.WithTimeout(context.Background(), time.Second*10)
    defer cancel()
    if err := server.Shutdown(ctx); err != nil {
    logging.Error("http server shutdown err", err)
    }
    },

    func() {
    //关闭kafka producer(特别是异步生产者,强制关闭会导致丢消息)
    if err := mq.GetKafkaSyncProducer(mq.DefaultKafkaSyncProducer).Close(); err != nil {
    logging.Error("kafka shutdown err", err)
    }
    },
    func() {
    //关闭mysql
    if err := db.CloseMysqlClient(db.DefaultClient); err != nil {
    logging.Error("mysql shutdown err", err)
    }
    },
    func() {
    //关闭redis
    if err := cache.GetRedisClient(cache.DefaultRedisClient).Close(); err != nil {
    logging.Error("redis shutdown err", err)
    }
    },
    )
    //也可以自己实现优雅关闭
    //signals := make(chan os.Signal, 0)
    //signal.Notify(signals, syscall.SIGHUP, syscall.SIGINT, syscall.SIGTERM, syscall.SIGQUIT)
    //s := <-signals
    //global.LOG.Warn("shop receive system signal:", s)
    //ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
    //defer cancel()
    //err := server.Shutdown(ctx)
    //if err != nil {
    // global.LOG.Error("http server error", err)
    //}
    //mq.GetKafkaSyncProducer(mq.DefaultKafkaSyncProducer).Close()

    选择 Spring Initializr ,用来创建 SpringBoot 工程
    以前我们选择的是 Maven ,今天选择 Spring Initializr 来快速构建 SpringBoot 工程。而在 Module SDK 这一项选择我们安装的 JDK 版本。
    type StoreProduct struct {
    Image        string         `json:"image" valid:"Required;"`
    SliderImage  string         `json:"slider_image" valid:"Required;"`
    StoreName    string         `json:"store_name" valid:"Required;"`
    StoreInfo    string         `json:"store_info" valid:"Required;"`
    Keyword      string         `json:"keyword" valid:"Required;"`
    CateId       int            `json:"cate_id" valid:"Required;"`
    ProductCate  *StoreCategory `json:"product_cate" gorm:"foreignKey:CateId;association_autoupdate:false;association_autocreate:false"`
    Price        float64        `json:"price" valid:"Required;"`
    VipPrice     float64        `json:"vip_price" valid:"Required;"`
    OtPrice      float64        `json:"ot_price" valid:"Required;"`
    Postage      float64        `json:"postage" valid:"Required;"`
    UnitName     string         `json:"unit_name" valid:"Required;"`
    Sort         int16          `json:"sort" valid:"Required;"`
    Sales        int            `json:"sales" valid:"Required;"`
    Stock        int            `json:"stock" valid:"Required;"`
    IsShow       *int8          `json:"is_show" valid:"Required;"`
    IsHot        *int8          `json:"is_hot" valid:"Required;"`
    IsBenefit    *int8          `json:"is_benefit" valid:"Required;"`
    IsBest       *int8          `json:"is_best" valid:"Required;"`
    IsNew        *int8          `json:"is_new" valid:"Required;"`
    Description  string         `json:"description" valid:"Required;"`
    IsPostage    *int8          `json:"is_postage" valid:"Required;"`
    GiveIntegral int            `json:"give_integral" valid:"Required;"`
    Cost         float64        `json:"cost" valid:"Required;"`
    IsGood       *int8          `json:"is_good" valid:"Required;"`
    Ficti        int            `json:"ficti" valid:"Required;"`
    Browse       int            `json:"browse" valid:"Required;"`
    IsSub        *int8          `json:"is_sub" valid:"Required;"`
    TempId       int64          `json:"temp_id" valid:"Required;"`
    SpecType     int8           `json:"spec_type" valid:"Required;"`
    IsIntegral   *int8          `json:"isIntegral" valid:"Required;"`
    Integral     int32          `json:"integral" valid:"Required;"`
    BaseModel
    }

    //定义商品消息结构
    type ProductMsg struct {
    Operation string `json:"operation"`
    *StoreProduct
    }
    切换web服务器
    现在我们启动工程使用的是 tomcat 服务器,那能不能不使用 tomcat 而使用 jetty 服务器,jetty 在我们 maven 高级时讲 maven 私服使用的服务器。而要切换 web 服务器就需要将默认的 tomcat 服务器给排除掉,怎么排除呢?使用 exclusion 标签
    func (e *StoreProductController) Post(c *gin.Context) {
    var (
    dto  dto2.StoreProduct
    appG = app.Gin{C: c}
    )
    httpCode, errCode := app.BindAndValid(c, &dto)
    if errCode != constant.SUCCESS {
    appG.Response(httpCode, errCode, nil)
    return
    }
    productService := product_service.Product{
    Dto: dto,
    }
    model, err := productService.AddOrSaveProduct()
    if err != nil {
    appG.Response(http.StatusInternalServerError, constant.FAIL_ADD_DATA, nil)
    return
    }

    //发消息队列
    defer func() {
    operation := product.OperationCreate
    if dto.Id > 0 {
    operation = product.OperationUpdate
    }
    productMsg := models.ProductMsg{
    operation,
    &model,
    }
    msg, _ := json.Marshal(productMsg)
    p, o, e := mq.GetKafkaSyncProducer(mq.DefaultKafkaSyncProducer).Send(&sarama.ProducerMessage{
    Topic: product.Topic,
    Key:   mq.KafkaMsgValueStrEncoder(strconv.FormatInt(dto.Id, 10)),
    Value: mq.KafkaMsgValueEncoder(msg),
    },
    )
    if e != nil {
    global.LOG.Error("send product msg error ", e, "partition :", p, "offset :", o, "id :", dto.Id)
    }
    }()

    appG.Response(http.StatusOK, constant.SUCCESS, nil)

    }


  • [完结19章]SpringBoot开发双11商品服务系统
    今天给大家分享一下关于SpringBoot开发双11商品服务系统的整个流程,我将深度还原大厂实习期技术成长全流程,让你收获大厂项目开发全流程与实战经验,具备应对大流量场景问题的解决能力,全面助力提升实习/转正/跳槽表现力与成功率。


    Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。通过这种方式,Spring Boot致力于在蓬勃发展的快速应用开发领域(rapid application development)成为领导者。

    目的
    让大家更容易使用 spring,更容易集成各种常用的中间件、开源软件。
    SpringBoot 基于 Spring 开发, SpringBoot 本身并不提供 Spring 框架的核心特性以及扩展功能,只是用于快速、敏捷地开发新一代基于 Spring 框架的应用程序。
    SpringBoot 不是用来替代 spring 的解决方案,而是和 spring 框架紧密结合提升 spring 开发者体验的工具。

    准备测试数据
    我们先导入准备好的测试数据,这个测试数据是一份商品数据。

    字段包含商品id,name(商品名)
    last_month_sales(最近一个月的销量)
    favorites(收藏数)这几个字段,我们主要是通过商品名来搜索。
    首先我先先创建一个商品索引
    PUT goods
    {
      "settings": {
        "number_of_shards": 1,
        "number_of_replicas": 0
      },
      "mappings": {
        "properties": {
          "id": {
            "type": "keyword",
            "doc_values": false,
            "norms": false,
            "similarity": "boolean"
          },
          "name": {
            "type": "text"
          },
            "price": {
            "type": "double"
          },
          "last_month_sales": {
            "type": "long"
          },
          "favorites": {
            "type": "long"
          },
          "year":{
            "type": "short"
          }
        }
      }
    }
    千里之行,始于足下。想要舒舒服服地使用Spring框架,就要把它的开发环境配置好,这对它好,也对我好。

    1. jdk 的配置       
    使用 IDEA 进行开发,在 IDEA 中配置 jdk 的方式很简单,打开 File->Project Structure选择 SDKs。
    在 JDK home path 中选择本地 jdk 的安装目录。
    在 Name 中为 jdk 自定义名字通过以上三步骤,即可导入本地安装的 jdk。如果是使用 STS 或者 eclipse 可以通过两步骤添加:
    window->preference->java->Instralled JRES 来添加本地 jdk。
    window-->preference-->java-->Compiler 选择 jre,和 jdk 保持一致。
    PUT test_index/_doc/1
    {
      "string_field":"imooc",
      "int_field": 100,
      "float_field":3.14,
      "bool_field":true,
      "date_field":"2022/03/16",
      "obj_field":{"key1":"value1","key2":100},
      "array_field1":[100,3.14],
      "array_field2":[100,"200"],
      "array_field3":["2022/03/16","100"],
      "array_field4":["100","2022/03/16"],
      "null_field":null
      }
      创建 Spring Boot 项目后需要进行 maven 配置。打开 File->settings,搜索 maven,配置一下本地的 maven 信息。在 Maven home directory 中选择本地 Maven 的安装路径;在 User settings file 中选择本地 Maven 的配置文件所在路径。在配置文件中配置一下国内阿里的镜像,这样在下载 maven 依赖时,速度会变得很快。
    {
      "test_index" : {
        "mappings" : {
          "properties" : {
            "array_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            },
            "bool_field" : {
              "type" : "boolean"
            },
            "date_field" : {
              "type" : "date",
              "format" : "yyyy/MM/dd HH:mm:ss||yyyy/MM/dd||epoch_millis"
            },
            "float_field" : {
              "type" : "float"
            },
            "int_field" : {
              "type" : "long"
            },
            "obj_field" : {
              "properties" : {
                "key1" : {
                  "type" : "text",
                  "fields" : {
                    "keyword" : {
                      "type" : "keyword",
                      "ignore_above" : 256
                    }
                  }
                },
                "key2" : {
                  "type" : "long"
                }
              }
            },
            "string_field" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            }
          }
        }
      }
    }

    从以上结果中,我们可以看到 Spring Boot 通过MVN方式自动为项目配置了对应的 springframework、logging、jackson 以及 Tomcat 等依赖,而这些正是我们在开发 Web 项目时所需要的。

    那么细心的同学可能会发现一个问题,即在以上 pom.xml 的配置中,引入依赖 spring-boot-starter-web 时,并没有指明其版本(version),但在依赖列表中,我们却看到所有的依赖都具有版本信息,那么这些版本信息是在哪里控制的呢? 
    {
      "_index" : "test_index",
      "_id" : "1",
      "_version" : 1,
      "_seq_no" : 0,
      "_primary_term" : 1,
      "found" : true,
      "_source" : {
        "string_field" : "Chan",
        "int_field" : 100,
        "int_string_field" : "100",
        "float_field" : 3.14,
        "bool_field" : true,
        "date_field" : "2022/03/16",
        "obj_field" : {
          "key1" : "value1",
          "key2" : 100
        },
        "array_field" : [
          "value1",
          "100"
        ],
        "null_field" : null
      }
    }
    spring-boot-starter-parent 是所有 Spring Boot 项目的父级依赖,它被称为 Spring Boot 的版本管理中心,可以对项目内的部分常用依赖进行统一管理。

    <parent>    

            <groupId>org.springframework.boot</groupId>    

            <artifactId>spring-boot-starter-parent</artifactId>    

            <version>2.5.6</version>    

            <relativePath/> 

    </parent>

    Spring Boot 项目可以通过继承 spring-boot-starter-parent 来获得一些缺省的配置内容,它主要提供了以下特性:

    默认 JDK 版本(Java 8)

    默认字符集(UTF-8)

    依赖管理功能

    资源过滤

    默认插件配置识别 

    application.properties 或 application.yml 类型的配置文件
    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":false 
      }
    }
    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    DELETE test_index

    PUT test_index
    {
      "mappings": {
        "dynamic":"strict" 
      }
    }


    POST test_index/_doc/2
    {
      "field1":{
       "field2":"imooc ES" 
      }
    }

    GET test_index/_search
    {
      "query": {
       "term": {
         "field1.field2": {
           "value": "imooc ES"
         }
       }
      }
    }

    GET test_index/_doc/4

    以下就是本文的全部内容,感谢大家观看
  • 工业级液晶显示控制芯片RA8889ML3N原理图
    TFT-LCD液晶显示控制芯片RA8889ML3N的优势:
    低功耗及功能强大:这款芯片最大支持分辨率为1366x2048,内置128Mb SDRAM,可为内容显示进行快速刷新,同时内置视频解码单元,支持JPEG/AVI硬解码播放,为普通单片机实现视频播放提供可能。
    支持多种接口:RA8889ML3N支持MCU端的8080/6800 8/16-bit 非同步并列接口和3/4线SPI及IIC串列接口,以及最大驱动1366x800分辨率的TFT LCD。
    显示功能强大:RA8889ML3N提供多段的显示记忆体缓冲区段,支持多图层功能,并提供画中画(PIP)、支持透明度控制与显示旋转镜像等显示功能。
    应用范围广:这款芯片广泛应用于自动化控制设备、电力监测控制、测量检测仪器仪表、电教设备、智能家电、医疗检测设备、车用仪表及工控自动化等领域。
  • 基于单片机的TFT-LCD液晶显示控制芯片选型表
    基于单片机的TFT-LCD液晶显示控制芯片选型表
  • 13、如何解决直插差模电感的异响问题
    13、如何解决直插差模电感的异响问题
  • RadarSensors_ARS308-21_cn数据手册
    RadarSensors_ARS308-21_cn数据手册
  • XPM52C规格书 65W USB PD 多协议降压芯片
    XPM52C 是一款集成同步开关的降压转换器,支持多种输出快充协议、支持 USB Type-C 和 PD 等多种快充协议,包括 USB Type-C 和 PD 协议,高通 QC2.0/3.0/3.0+,华 为 FCP/SCP/HVSCP,VOOC 2.0/4.0 协议,联发科 PE,三星 AFC,USB BC1.2 DCP 以及 Apple 2.4A 充电规范,为车载充电器、各种快充适配器、智能排插等供电设备提供完 整的解决方案。
  • ECG前置电路设计
    TI出的一个经验文档,讲的很不错
  • 注释EN55014-1
    注释EN55014-1
  • 12、如何挑选立式磁棒电感厂家
    12、如何挑选立式磁棒电感厂家
  • 基于单片机的工业级液晶图形显示控制芯片RA8889ML3N-Datasheet
    TFT-LCD液晶显示控制芯片RA8889ML3N的优势:
    低功耗及功能强大:这款芯片最大支持分辨率为1366x2048,内置128Mb SDRAM,可为内容显示进行快速刷新,同时内置视频解码单元,支持JPEG/AVI硬解码播放,为普通单片机实现视频播放提供可能。
    支持多种接口:RA8889ML3N支持MCU端的8080/6800 8/16-bit 非同步并列接口和3/4线SPI及IIC串列接口,以及最大驱动1366x800分辨率的TFT LCD。
    显示功能强大:RA8889ML3N提供多段的显示记忆体缓冲区段,支持多图层功能,并提供画中画(PIP)、支持透明度控制与显示旋转镜像等显示功能。

    应用范围广:这款芯片广泛应用于自动化控制设备、电力监测控制、测量检测仪器仪表、电教设备、智能家电、医疗检测设备、车用仪表及工控自动化等领域。

    技术咨询与交流:QQ2851189731, 微信13760238805

  • 15、贴片叠层电感应用测试中不良率高的原因
    15、贴片叠层电感应用测试中不良率高的原因
  • 首个基于Transformer的分割检测+视觉大模型视频课程(附源码+课件)
    众所周知,视觉系统对于理解和推理视觉场景的组成特性至关重要。这个领域的挑战在于对象之间的复杂关系、位置、歧义、以及现实环境中的变化等。作为人类,我们可以很轻松地借助各种模态,包括但不仅限于视觉、语言、声音等来理解和感知这个世界。现如今,随着 Transformer 等关键技术的提出,以往看似独立的各个方向也逐渐紧密地联结到一起,组成了“多模态”的概念。

    多功能
    通过引入灵活的提示引擎,包括点、框、涂鸦 (scribbles)、掩模、文本和另一幅图像的相关区域,实现多功能性;
    可组合
    通过学习联合视觉-语义空间,为视觉和文本提示组合实时查询,实现组合性,如图1所示;
    可交互
    通过结合可学习的记忆提示进行交互,实现通过掩模 引导的交叉注意力保留对话历史信息;
    语义感知
    通过使用文本编码器对文本查询和掩模标签进行编码,实现面向开放词汇分割的语义感知。

    超大规模视觉通用感知模型由超大规模图像、文本主干网络以及多任务兼容解码网络组成,它基于海量的图像和文本数据构成的大规模数据集进行预训练,用于处理多个不同的图像、图像-文本任务。此外,借助知识迁移技术能够实现业务侧小模型部署。

    超大规模视觉通用感知模型面临的挑战:
    (1)网络参数量庞大,通常超十亿参数,训练稳定性、收敛性、过拟合等问题相较于小网络挑战大很多。
    (2)原始数据集包含数十亿异质低质量图片与海量文本,多步训练以利用异质的多模态多任务数据,流程复杂,存在灾难性遗忘,难以定位精度等问题。
    (3)实验成本高,通常需要上千块GPU并行训练数周,需要研究者有敏锐的分析能力和扎实的知识基础。
    (4)工程挑战多,海量数据的吞吐,大型GPU集群上的并行算法,超大参数量模型的内存管理。

    提示工程
    大多数视觉数据集由图像和相应文本标签组成,为了利用视觉语言模型处理视觉数据集,一些工作已经利用了基于模版的提示工程,
    text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]  
    text_tokens = clip.tokenize(text_descriptions).cuda()

    除了此类大型视觉语言基础模型外,一些研究工作也致力于开发可以通过视觉输入提示的大型基础模型。例如,最近 META 推出的 SAM 能够执行与类别无关的分割,给定图像和视觉提示(如框、点或蒙版),指定要在图像中分割的内容。这样的模型可以轻松适应特定的下游任务,如医学图像分割、视频对象分割、机器人技术和遥感等

    从模型训练、模型分发、模型商业化,美图体系化地同创作者和开发者共建模型生态:

    (1)模型训练:提供二次训练能力,并持续不断地为创作者提供服务,包括培训、社区和模型创作大赛。

    (2)模型分发:创作者和开发者共建的模型可以在美图的产品内进行分发,在分发过程中持续优化模型。

    (3)模型商业化:行业客户可通过 MiracleVision 的 API 和 SDK 进行商业使用,创作者和开发者通过商业合作获得经济收益。
    通用视觉-语言学习的基础模型
    UNITER:结合了生成(例如掩码语言建模和掩码区域建模)和对比(例如图像文本匹配和单词区域对齐)目标的方法,适用于异构的视觉-语言任务。
    Pixel2Seqv2:将四个核心视觉任务统一为像素到序列的接口,使用编码器-解码器架构进行训练。
    Vision-Language:使用像 BART 或 T5 等预训练的编码器-解码器语言模型来学习不同的计算机视觉任务。
    模型整体结构上,抛弃了CNN,将 BERT 原版的 Transformer 开箱即用地迁移到分类任务上面,在使用大规模训练集的进行训练时,取得了极好的效果。
    同时,在大规模数据集上预训练好的模型,在迁移到中等数据集或小数据集的分类任务上以后,也能取得比CNN更优的性能。
    模型整体结构如下图所示,完全使用原始 BERT 的 Transformer 结构,主要是对图片转换成类似 token 的处理,原文引入了一个 patch 的概念,首先把图像划分为一个个的 patch,然后将 patch 映射成一个 embedding,即图中的 linear projection 层,将输入转换为类似 BERT 的输入结构,然后加上 position embedding,这里的 position 是1D的,最后加上一个learnable classification token 放在序列的前面,classification由 MLP 完成。

    这里我们用 RAM 提取了图像的语义标签,再通过将标签输入到 Grounding-DINO 中进行开放世界检测,最后再通过将检测作为 SAM 的提示分割一切。目前视觉基础大模型可以粗略的归为三类:
    textually prompted models, e.g., contrastive, generative, hybrid, and conversational;
    visually prompted models, e.g., SAM, SegGPT;
    heterogeneous modalities-based models, e.g., ImageBind, Valley.

    CoCa 通过将所有标签简单地视为文本,对 web-scale alt-text 和 annotated images 进行了从头开始端到端的预训练,无缝地统一了表示学习的自然 语言 监督。因此,CoCa 在广泛的下游任务上实现了最先进的性能,零样本传输或最小的任务特定适应, 跨越视觉识别(ImageNet,Kinetics-400/600/700,Moments-in-Time )、跨模式检索(MSCOCO、Flickr30K、MSR-VTT)、 多模式理解(VQA、SNLI-VE、NLVR2)和图像字幕(MSCOCO、NoCaps)。在 ImageNet 分类中,CoCa 获得了 86.3% 的 zero-shot top-1 准确率, frozen encoder and finetune classifier 是 90.6%,finetune encoder 可以到 91.0%。

    截止目前国内外已经发布了许多包括 NLP, CV 和 多模态在内的大规模模型,但是这些模型在应用落地上还是有待进一步探究的,目前应用落地较好的有华为 的盘古,在电网和金融圈都有应用;智源的悟道系列在诗词图文上都有广泛应用,可以帮助学生看图写作,根据文字生成插图等;百度的文心也发布了在金融方 面的应用。但截止目前为止大模型在实际中的应用还不是很理想,大模型发展的初衷是使用一个预训练好的大模型代替一堆小作坊似的根据不同任务训练的小模 型,通过模型蒸馏知识迁移等技术在小模型上使用少量数据集达到超过原来小模型性能的目标。CV 大模型在应用上的一个难点是与实际应用相结合,目前社会中 用的较多的视觉相关的深度学习模型主要包括物体检测,人脸识别以及缺陷检测(部分)相比 NLP 模型在实际中的使用少很多,因此将 CV 模型与实际生产相 结合发现更多的应用场景很关键。另外一个 CV 大模型应用的难点就是如何快速高效的使用蒸馏和知识迁移技术提升下游任务的性能,这两点难题的解决在 CV 大模型的实际应用中都刻不容缓。

    总结起来,将大模型应用于更高分辨率的下游视觉任务具有以下好处:提高感知能力、改善定位精度、提升语义理解、改善细节保留和边缘清晰度、增加鲁棒性和泛化能力,以及推动研究进展。这些好处使得大模型在处理高分辨率图像时能够获得更准确、更细致和更真实的结果。随着深度学习和计算资源的不断发展,我们可以期待更先进的大模型和相关技术的出现,进一步推动计算机视觉在高分辨率图像任务中的应用和突破

  • 教程背景通过之前的教程,我们已经为大家演示了宏集MC-Prime控制器的连接、试运行和CODESYS的安装,并创建了一个计数器项目。在本期教程中,我们将进一步深入,教大家如何使用CODESYS的可视化界面。一、两种可视化方式在CODESYS V3中,可视化界面分为两种类型:目标可视化和网络可视化。二者之间存在着一些本质上的区别。(一)目标可视化目标可视化(Target visualization)主要是针对一些带有集成屏幕的控制器(如宏集DC系列)。如果是没有屏幕的控制器,则需要通过在控制器上运
    工业物联网技术 2023-11-30 11:45 94浏览
  • 作者:Shawn Prestridge,IAR资深现场应用工程师 / 美国FAE团队负责人 安全一直都是一个非常热门的话题,似乎每周都会听到这样的消息:某某公司如何被入侵,数百万用户的数据被泄露。 我们看到这么多的安全问题,部分原因在于我们对待安全的方式:安全性通常被认为是事后考虑的问题,是在开发结束时才添加到设备上的东西。然而,复杂的系统,尤其是嵌入式系统,有一个很大的攻击面,这让攻击者有机可乘,能够在“盔甲”上找到破绽。如果你去研究大部分黑客试图入侵系统的方式,你很快就会发现,在他们的武
    电子科技圈 2023-11-30 14:43 121浏览
  • By Toradex胡珊逢 简介 双屏显示在显示设备中有着广泛的应用,可以面向不同群体展示特定内容。文章接下来将使用 Verdin iMX8M Plus 的 Arm 计算机模块演示如何方便地在 Toradex 的 Linux BSP 上实现在两个屏幕上显示独立的 Qt 应用。 硬件介绍 软件配置 Verdin iMX8M Plus 模块使用 Toradex Multimedia Reference Image V6.4.0 版本,其包含 Qt5.15 相关运行环境。默认系统中已经使
    hai.qin_651820742 2023-12-01 11:53 117浏览
  •    电源连接器的插针遭受损坏的情况非常普遍,这种故障会让连接器的电流传输受到影响,进而影响设备的正常使用,那是什么因素导致电源连接器的插针遭到损坏呢?下面Amass将为您分析其中的原因。   1、应用环境高温 1. 在高温环境下,电源连接器插针易受腐蚀影响,形成氧化层,损失接触压力,甚至可能发生接头烧损情况。对于这种环境,电源连接器需要具备耐高温性能,不仅需满足环境温度要求,还须考虑其在工作状态下的热量散发。  
    艾迈斯电子 2023-11-30 16:33 129浏览
  • 高低温探针台是一种用于材料科学、物理、化学等领域的实验设备,主要用于在高温和低温环境下对材料进行各种实验和研究。下面是高低温探针台的工作原理。工作原理是将样品放置在加热和冷却组件上,然后使用各种测量仪器对其进行实验和测量。具体来说,其工作流程如下:将样品放置在加热和冷却组件上;启动加热系统,将样品加热到所需的温度;启动制冷系统,将冷却组件降温到所需的温度;通过各种测量仪器对样品进行实验和测量;记录实验数据并进行分析和处理;结束实验后,关闭加热和制冷系统,并解除真空状态,取出样品。总之,高低温探针
    锦正茂科技 2023-12-01 14:50 101浏览
  • 前言 在网络部署之后和业务开展之前,运营商迫切希望了解当前网络的性能状态,以便为商业规划和业务推广提供必要的基础数据支持。因此,高可靠性和高精确度的性能测试方法对于运营商评判网络性能的优劣,显得尤为重要,而RFC 2544等传统测试标准已不足于鉴定当今的服务等级协议(SLA)。SLA是服务提供商(如ISP)及其最终用户之间的协议,它规定以太网服务的开通或验证必须进行测量,且必须达到SLA的规范要求。目前,对以太网服务进行测试和故障诊断的最佳选择无疑是ITU-T Y.1564标准。 &
    信而泰市场部 2023-11-30 15:06 90浏览
  • 数字脉冲升级功能德思特Spectrum系列全部在售数字化仪和AWG产品(包括TS-M2p,TS-M4i,TS-DN2,TS-DN6型号产品),发布了新增的数字脉冲(DPG)升级功能,于11月15日正式推出。用户购买后,可自行通过对产品内置FPGA进行固件升级获取相关功能,无需返厂。该功能可以为原本的数字化仪或AWG产品增加3~4个独立的数字脉冲发生器通道,帮助用户实现测试系统中的一系列控制功能,为客户的产品升级和系统扩建提供了一种较低成本的选项。数字脉冲发生器技术浅析#01 数字脉冲发生器是什么
    虹科测试测量TM 2023-11-30 11:23 55浏览
  • 随着汽车电子进入电动化+智能网联的时代,新能源、车联网、智能化、电动化四个领域带来了CAN数据的需求,企业车队管理需要数据,汽车运营需要数据,改装、解码、匹配工具打造需要数据,现在就连简单的LED汽车照明控制,也需要匹配数据。这一切,逃脱不了CAN、LIN、SENT、BSD、MOST各种协议下,不同ECU控制单元在不同年份,不同款式下的数据,可以这么说,在新能源这个前提下,我们要做的工作和要做的事情可能要更为复杂、多变。 前日,我拿出一份13年左右丰田的CAN协议,里边包括车灯控制、车
    lauguo2013 2023-11-30 15:45 109浏览
  • 在电力系统中,过电压保护器是一种重要的设备,它对电力设备的安全运行具有重要的作用。下面我们来了解一下过电压保护器的基本结构。过电压保护器通常由三个主要部分组成:间隙、非线性元件和触发器。1. 间隙:间隙是过电压保护器的基本结构之一,它是由两个金属电极组成的,通常采用球形或棒形结构。间隙的间距通常在几毫米到几厘米之间,它能够承受一定的电压,并在过电压条件下进行放电。2. 非线性元件:非线性元件是过电压保护器的另一个重要组成部分。它是一种特殊的电阻器,能够在高电压下呈现出非线性的特性。当电压超过一定
    保定众邦电气 2023-11-30 14:49 173浏览
  • 听力危机不可不慎,助听器市场的发展概况根据世界卫生组织WHO于2021年所发布的世界听力报告(World report on hearing)统计,全球目前有20%左右的听损人口;其中「轻度」与「中度」听损人口就占了大约15亿人左右。台湾方面,根据2021年卫生福利部统计处的数据显示,台湾则约有12万人有听力损失的问题,其中更有高达56% (约71,543人)确诊为轻度听损。足以看出听力受损问题已逐渐成为全球新兴的健康议题。听力损失的成因及轻重程度因人而异,但无论如何,或多或少都会影响到我们的日
    百佳泰测试实验室 2023-11-30 17:26 118浏览
  •     按照 IPC术语,连接盘/Land 是指一块导体,通常用于连接和/或固定元器件的导电部分。    为了增强孔的机械强度,所有的金属化孔或者镀覆孔,在穿过每一层铜箔时,都应该有连接盘,连接盘的形状不限。前面提过的孔环也是连接盘的一种形式。在允许的条件下,孔环和连接盘的尺寸都要尽量大一些。    前面提到过,铜层图案(连接盘)和孔是在不同的工序制作的。由于加工公差的存在,用常见的圆形连接盘和圆孔来说,并不能保证孔和连接盘保持精确的同
    电子知识打边炉 2023-11-30 21:32 146浏览
  • 印刷部分 这本书印刷和普通书籍不太一样,类似笔记本的手写体印刷和笔记的网格,有亲近感和新鲜感内容部分 分为通信工程 ;传感器工程;磁传感器工程;太阳电池功能几大部分通信电路是一种用于传输信息的电子电路,可以用于无线通信、有线通信和网络通信等各种通信系统中。传感器电路则是用于感知和测量环境参数的电路,可以探测光、温度、压力、湿度、运动等各种物理量。在学习通信电路方面,可能会接触到模拟通信电路和数字通信电路。模拟通信电路主要涉及模拟信号的传输和处理,如调制解调、信号放大、滤波等。数字通信电路则涉及数
    陇南有只大花猫 2023-11-30 19:01 198浏览
  • 非接触精密洁净设备在锂电池领域有广泛的应用,主要用于生产制造过程中的Roll to Roll及sliting工艺、电芯预处理等环节。针对卷板、薄膜、膜片制造工艺中的大宽幅、裁切后边部处理再清洁、除异物、毛刺等需求,非接触精密洁净设备通过高旋轴与特制气嘴的优化排列,可满足现有干燥炉、再复合、精度提升等新工艺中的洁净度要求。具体的应用环节如下:锂电池生产过程中的Roll to Roll工艺和sliting工艺,非接触精密洁净设备通过高精度的洁净环境和控制,保证了锂电池的制造质量和安全性。电芯预处理过
    SHLZ 2023-11-30 11:49 146浏览
  • Achronix推出基于FPGA的加速自动语音识别解决方案 提供超低延迟和极低错误率(WER)的实时流式语音转文本解决方案,可同时运行超过1000个并发语音流2023年11月——高性能FPGA芯片和嵌入式FPGA(eFPGA IP)领域的领先企业Achronix半导体公司日前自豪地宣布:正式推出Achronix与Myrtle.ai合作的最新创新——基于Speedster7t FPGA的自动语音识别(ASR)加速方案。这一变革性的解决方案,实现了高精度和快速响应,可将超过1000个并发的实时
    电子科技圈 2023-11-30 11:52 157浏览
  •    本文介绍在ALPS平台上进行SSL测试的内容和方法   什么是SSL SSL全称是Secure Sockets Layer,指安全套接字协议,为基于TCP的应用层协议提供安全连接;SSL介于TCP/IP协议栈的第四层和第五层之间,广泛用于电子商务、网上银行等。 SSL协议有三个版本,其中SSL2.0和3.0曾被广泛使用,其中SSLv3.0自1996提出并得到大规模应用成为了事实上的标准,在2015年才被弃用。1999年,IETF收纳了SSLv3.0并
    信而泰市场部 2023-11-30 15:08 102浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦