【独家】特斯拉4680二代产线进展深度解读

智享新汽车 2023-09-25 10:52


根据推特(X)账号 Joe Tegtmeyer 在7月16日公布的特斯拉德克萨斯超级工厂的四张高清图片,我们有机会窥探特斯拉4680二代电芯的很多细节和变化。

结合最近弗洛蒙德的第一代4680电芯生产线将在今年11月份停工三个月的消息,以及才神道之前公开的4680的28Ah顿封版电芯谍照的分析,我们完全可以一窥特斯拉4680二代产线进展的端倪。
原创作者:詹姆斯鱼



其实,早在今年的7月16日,Joe Tegtmeyer 就在社交账户上放上了四张特斯拉德克萨斯超级工厂的4680车间高清铁谍照。这四张照片透露了很多关于特斯拉4680二代产线的信息。


在这个 Joe Tegtmeyer 的社交媒体上,充斥着大量特斯拉工厂的空拍照片和视频。他本人则是几乎每天都跑到特斯拉德克萨斯超级工厂外用无人机侦查特斯拉的最新动向。 

我很好奇,他就这么公开偷窥,特斯拉也没有阻止他。这要是在国内的电池厂周边这么干,可能早就被抓起来了(笑)。

OK,咱们书归正传。在解读四张照片之前,请大家先看看才神道之前发的一个视频。


大家通过这个视频应该注意到,特斯拉正在努力提升电芯的能量密度。这张照片显示,特斯拉在7月31日正在做容量一致性测试,从结果上来看,效果还不够好。

但这个7月31日是不是2023年的7月31日,才神道并不能确认,我们只能告诉大家,这张照片是我们8月初从美国的某个渠道获得的

大家也知道,才神道还获得了一批特斯拉负极干法的材料和自支撑膜的边角料。详细信息可以点击这里。

另外,最近有消息称,三星SDI的4680能量密度达到了特斯拉的要求,正在与特斯拉谈判以获得特斯拉的订单。他们的量产型4680会率先在马来西亚上市,然后正在匈牙利的工厂内建设4680的欧洲量产线

那么,三星SDI的所谓的“达到了特斯拉的能量密度要求”,是不是指的就是28Ah的这个指标呢?如果达到这个指标,二代4680电芯的能量密度将达到288Wh/kg的水平

当然,最近特斯拉的另外两条消息,也引起了业界关注。

第一,特斯拉官方网站下架了4680版的 Model Y 车型

第二,据传,特斯拉的弗洛蒙德工厂将在11月停产三个月,具体原因没有官方说明

于是,很多关于特斯拉4680出问题了,特斯拉放弃4680路线了的猜测甚嚣尘上

但据才神道观察,这似乎恰恰相反。这也许进一步证明特斯拉的二代电芯生产技术已经成熟,特斯拉准备用二代电芯取而代之

下面就让才神道利用 Joe Tegtmeyer 的四张高清图片,带大家进一步展开一下我们的发现和我们的预测。





我们先来看第一张照片。

配图:第一张照片


大家可以看到图片中心位置有两个红色桶,据外媒可靠人士透露,这两个红色的桶是正负极片的边角料收集桶


他们还说,这些边角料是会进行回收的,因为干法是可以非常容易回收的。但才神道通过美国的渠道获得了大量干法电极的边角料说明,目前特斯拉还没有对负极干法的极片进行回收。计他们会把主要精力放在如何提高产线量产的成熟度上吧。


我们把图片放大看一下,你会发现,每个柱子中间的部分是一样的设备。很像是是特斯拉在Q2财报会议上提到的极耳切割、卷绕和焊接正负集流盘的三合一一体机。

我们通过早前特斯拉泄露出来的柏林超级工厂设计图纸可以看出:A020-08这个过程就是使用的三合一一体机的设备


我们把这个三合一的设备放大了看一看


最左侧的貌似就是正负极极耳激光切割区域,中间的应该是极耳弯折和卷绕的区域,最后的部分像是焊接正负集流盘的区域

这部分在特斯拉超级工厂电池生产车间叫做A020-08 tabless process 无极耳处理流程(参考柏林工厂设计文件)。


把这个图片放大,就可以看到如第一张照片中的三个连续过程了





我们再来看看第二张图片。

配图:第二张照片


从第二种图片中可以看到,红色回收桶这组三联设备的左侧,也是一套三联设备。这进一步印证了柏林工厂设计文件的布局。

这说明,柏林工厂的设计文件和德州超级工厂的设计是类似的之前我们也了解过,说柏林工厂是两条线,刚好和图纸吻合。当然,这两条线现在已经搬回到德州工厂了。


两条流水线,每条流水线配有16台三合一一体机和10台注液机。照片拍摄的位置刚好就是红圈的位置。

另外,我们从第二张照片中还可以看出,特斯拉产线上的会议是在一个围挡的屏风后面,大家站着讨论的,私密且高效


另外,我们从第二张照片中还可以看出,特斯拉产线上的会议是在一个围挡的屏风后面,大家站着讨论的,私密且高效



还有,图片的右侧,有明显的红色和绿色的光。这个绿色的光,应该和早前特斯拉放出的视频中,焊接集流盘的动作相符





我们再来看看第三张图片。

配图:第三张照片


第三张照片我们看着就比较扎心了,因为这里有超过千只电芯。从这个位置来看,应该是报废品。很可能是特斯拉在生产过程中停机造成的半成品。因为如果是生产过程中的淘汰品,不应该最堆放在这里。


因为,我们都知道,这种规模和效率的生产线,一旦开动起来,即便良率超过95%,不良品的数量也是惊人的,堆放到这里肯定是不现实的。所以,唯一的解释就是因为停机而造成的半成品。


那么接下来,我们再看看第四张照片。


配图:第四张照片


第四张照片很明显,这是化成设备。按照柏林设计文件中提到电池生产工艺,

化成和静置过程大约要花10天,然后再进行出厂的随机检验。





结合我们获得的照片、公开信息和渠道信息,我们可以大胆对特斯拉4680的量产进度有如下预测:

第一,特斯拉Gen 2版本应该有墩封款和焊接款两种,其容量都应在28Ah,能量密度约在280Wh/kg左右;

第二,弗洛蒙德工厂目前的Gen 1仍然是量产主力,这次停产三个月,应该是为了更换部分关键设备以适应墩封版Gen 2的工艺需要。从目前获得的消息来看,这次更新大概率是更换卷绕一体机及正极的干法极片生产线


才神道相信,对于更换卷绕一体机这一点,大家应该不意外,明显二代的卷绕一体机对极耳的处理更合理,更高效。但在集流盘位置的处理上,应该和德州超级工程的处理还是不同的。


但对于干法,大家肯定还不是很认可。其实,大家如果仔细看一看柏林工厂的设计文件,就应该注意到,柏林工厂原来的设计就是正负极都是干法工艺的


这就是说,其实特斯拉的正极干法工艺在特斯拉看来已经成熟,包括在德州工厂的生产线上,很可能正负极都使用了干法工艺

但在量产过程中,依然遇到了前所未有的困难。随着工艺的成熟,早前报道量产超过了一千万只,这或说明,正极的干法工艺也终于成熟,量产的良率和效率都得到了较理想的突破

因此,这时候也是时候将正极的干法设备同步到弗洛蒙德工厂

第三,特斯拉4680版的特斯拉之所以下架,也是因为弗洛蒙德工厂的升级影响。目前的订货量应该和弗洛蒙德工厂到11月份的量产能力匹配的。

第四,一旦二代4680的Model Y上线,会有德州版的焊封版4680,也会有弗洛蒙德的顿封版,但主力肯定是德州版的焊封版。当然,这也是一个非常好的营销事件,特斯拉就是要让大家关注Model Y的升级节点,毕竟,二代电芯的能量密度可是提升约25%左右,如果同样的电池配置,续航可是提升了惊人的25%啊!

因为弗洛蒙德的产线改造后,不可能一下子恢复到之前的量产速度,逻辑上也要有一个较长的爬坡过程。这同时也算是一个好消息,那就是德州工厂的量产能力肯定是获得保证了的,不然不会动弗洛蒙德

而且,我们都知道德州工厂的量产能力是非常恐怖的,这也意味着二代4680电芯既可以保证Model Y的交付,或可以同时提供给即将发售的Cybertruck


当然,特斯拉的Q3财报会议也即将在10月登场,到时,才神道的预测就会获得进一步印证。

希望获得特斯拉柏林工厂设计文件的朋友,欢迎大家加入“三电技术专家委员会”知识星球获取。



另外,宁德时代瞩目的麒麟电芯,我们的拆解报告也已经完成,总共101页,分为中英文两个版本,中文版售价5000人民币,英文版售价2000美金

应该说,不愧是宁德时代的电芯,的确非常有料,尽管针刺和短路试验表现不够完美,但该电芯依然使我们学习高端锂电电芯的难得的参考

同时,我们还推出了特斯拉第一代4680电芯拆解报告亿纬第一二代4695电芯拆解报告,订购请联系我们。




点亮【在看】,让更多的锂电人看见。


(作者:詹姆斯鱼 huangyu141208,才神道创始人、主播,锂电技术垂直粉丝8万+,专注于锂电技术推广和人才培育。文内图片均来自网络,如有任何问题,请及时与我们联系。)


你有什么想说的
在留言区分享给我们吧





■才神道电池技术直播材料下载
  1. 特斯拉新4680电池结构解密课件(原锂想生活链接
  2. 特斯拉干法电池技术解密直播(原锂想生活链接)

  3. 特斯拉4680电池PACK结构解密(原锂想生活链接)

  4. 全球固态电池技术解密资料(原锂想生活链接)

  5. 比亚迪刀片电池技术解密资料(原锂想生活链接)

  6. 特斯拉4680电池2K拆解直播课件(原锂想生活链接)

  7. 宁德时代的钠离子电池技术直播课件

  8. 特斯拉4680电池包拆解视频解析材料

  9. 全球锂电回收技术解密资料

  10. 全球氢能与氢燃料电池技术

  11. 全网独家 宁德时代M3P配方技术解密直播

  12. 独家解密特斯拉BMS系统

  13. 特斯拉冷却系统技术解密

  14. 特斯拉4680拆解之干法电极解密

  15. 门罗V2版4680拆解技术解密(打赏链接同第六场)

  16. )" linktype="text" imgurl="" imgdata="null" tab="innerlink" data-linktype="2" style="outline: 0px; color: var(--weui-LINK); cursor: pointer; font-size: 12px;">车用高压电池的挑战与发展(打赏链接用<前十五场电池技术直播介绍与资料>)

  17. 宁德时代凝聚态电池技术机密

  18. 量子电子技术解密

  19. 全球光伏技术发展技术

  20. 复合集流体和麒麟电池技术

  21. 全球液流电池技术发展直播资料

  22. 全球首款高能EVO电池首发技术

  23. 全球水系电池技术直播材料

  24. 带传感器的动力电池技术解密

  25. 特斯拉快充电池技术直播解密

  26. 未来电解液之离子液体
  27. 全球固态氢能存储技术解密

  28. 2022年电池技术总结

  29. 2022前沿研究&镍锰变化对钠离子电池正极影响

  30. 水系锌金属负极技术与MXene

  31. MXene二维材料在锂硫电池的应用

  32. 双氟电解液与比亚迪六棱电池解密

  33. 特斯拉新干法专利系列解读(4场)

  34. 特斯拉二代焊接壳体专利解读

  35. 宁德时代凝聚态电池技术解读

  36. 锂电产业可靠性提升要诀

  37. 半固态和全固态技术解密

  38. 全球快充硅负极技术解密

  39. 特斯拉4680预热之内部加热技术

  40. 宁德时代神行快充LFP电池正极技术解密

  41. 宁德时代神行快充负极技术解密



智享新汽车 汽车新四化专业资讯及干货分享平台
评论 (0)
  • 注释EN55014-1
    注释EN55014-1
  • RadarSensors_ARS308-21_cn数据手册
    RadarSensors_ARS308-21_cn数据手册
  • [完结19章]SpringBoot开发双11商品服务系统教程下载
    如何使用SpringBoot开发一款关于双11商品服务的系统?今天就给大家说道说道,希望对大家的学习有所帮助!
    1.什么是SpringBoot?
    Spring 的诞⽣是为了简化 Java 程序的开发的,⽽ Spring Boot 的诞⽣是为了简化 Spring 程序开发的。
    Spring Boot是由Pivotal团队提供的基于Spring的框架,该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。Spring Boot集成了绝大部分目前流行的开发框架,就像Maven集成了所有的JAR包一样,Spring Boot集成了几乎所有的框架,使得开发者能快速搭建Spring项目。
    2.SpringBoot的优点
    快速集成框架,Spring Boot 提供了启动添加依赖的功能,⽤于秒级集成各种框架。
    内置运⾏容器,⽆需配置 Tomcat 等 Web 容器,直接运⾏和部署程序。
    快速部署项⽬,⽆需外部容器即可启动并运⾏项⽬。
    可以完全抛弃繁琐的 XML,使⽤注解和配置的⽅式进⾏开发。
    ⽀持更多的监控的指标,可以更好的了解项⽬的运⾏情况

    后端配置
    1.1创建Springboot工程
    打开idea->file->new->project
    选择spring Initializer进行配置,java版本选择8,点击next
    - internal 应用代码
        - controllers 控制器模块
          - admin 后端控制器
          - front 前端控制器
        - listen redis监听器
        - models 模型模块
        - service 服务模块
          - product_serive 商品服务
          - wechat_menu_serive 微信公众号菜单服务
          ......
    - conf 公共配置
      -config.yml yml配置文件
      -config.go 配置解析,转化成对应的结构体
      
    - middleware 中间件
        - AuthCheck.go  jwt接口权限校验
    - cors.go 跨域处理
    ......
    - pkg 程序应用包
      - app
      - base
      - casbin
      - jwt
      - qrcode
      - wechat
      .....
    - routere 路由
    - logs 日志存放
    - runtime 资源目录
    首先,我仔细分析了需求,并且根据业务逻辑设计了合适的接口。
    对于多表关联查询,我使用了MyBatis的注解来编写SQL语句,并通过@One和@Many等注解来实现结果集的映射。
    对于数据分页,我使用了MyBatis-Plus提供的Page对象,并结合相关方法来实现数据分页查询。
    2. 上课中的优秀项目
    在课堂上,我完成了一个优秀的项目,主要是学生实体类的增删改查功能。通过这个项目,我巩固了对Spring Boot框架的理解和掌握。
    具体实现如下:
    //初始化redis
    err := cache.InitRedis(cache.DefaultRedisClient, &redis.Options{
    Addr:        global.CONFIG.Redis.Host,
    Password:    global.CONFIG.Redis.Password,
    IdleTimeout: global.CONFIG.Redis.IdleTimeout,
    }, nil)
    if err != nil {
    if err != nil {
    global.LOG.Error("InitRedis error ", err, "client", cache.DefaultRedisClient)
    panic(err)
    }
    panic(err)
    }

    //初始化mysql
    err = db.InitMysqlClient(db.DefaultClient, global.CONFIG.Database.User,
    global.CONFIG.Database.Password, global.CONFIG.Database.Host,
    global.CONFIG.Database.Name)
    if err != nil {
    global.LOG.Error("InitMysqlClient error ", err, "client", db.DefaultClient)
    panic(err)
    }
    global.Db = db.GetMysqlClient(db.DefaultClient).DB

    开发步骤
    SpringBoot 开发起来特别简单,分为如下几步:
    创建新模块,选择Spring初始化,并配置模块相关基础信息
    选择当前模块需要使用的技术集
    开发控制器类
    运行自动生成的Application类
    知道了 SpringBoot 的开发步骤后,接下来我们进行具体的操作
    shutdown.NewHook().Close(
    //关闭http server
    func() {
    ctx, cancel := context.WithTimeout(context.Background(), time.Second*10)
    defer cancel()
    if err := server.Shutdown(ctx); err != nil {
    logging.Error("http server shutdown err", err)
    }
    },

    func() {
    //关闭kafka producer(特别是异步生产者,强制关闭会导致丢消息)
    if err := mq.GetKafkaSyncProducer(mq.DefaultKafkaSyncProducer).Close(); err != nil {
    logging.Error("kafka shutdown err", err)
    }
    },
    func() {
    //关闭mysql
    if err := db.CloseMysqlClient(db.DefaultClient); err != nil {
    logging.Error("mysql shutdown err", err)
    }
    },
    func() {
    //关闭redis
    if err := cache.GetRedisClient(cache.DefaultRedisClient).Close(); err != nil {
    logging.Error("redis shutdown err", err)
    }
    },
    )
    //也可以自己实现优雅关闭
    //signals := make(chan os.Signal, 0)
    //signal.Notify(signals, syscall.SIGHUP, syscall.SIGINT, syscall.SIGTERM, syscall.SIGQUIT)
    //s := <-signals
    //global.LOG.Warn("shop receive system signal:", s)
    //ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
    //defer cancel()
    //err := server.Shutdown(ctx)
    //if err != nil {
    // global.LOG.Error("http server error", err)
    //}
    //mq.GetKafkaSyncProducer(mq.DefaultKafkaSyncProducer).Close()

    选择 Spring Initializr ,用来创建 SpringBoot 工程
    以前我们选择的是 Maven ,今天选择 Spring Initializr 来快速构建 SpringBoot 工程。而在 Module SDK 这一项选择我们安装的 JDK 版本。
    type StoreProduct struct {
    Image        string         `json:"image" valid:"Required;"`
    SliderImage  string         `json:"slider_image" valid:"Required;"`
    StoreName    string         `json:"store_name" valid:"Required;"`
    StoreInfo    string         `json:"store_info" valid:"Required;"`
    Keyword      string         `json:"keyword" valid:"Required;"`
    CateId       int            `json:"cate_id" valid:"Required;"`
    ProductCate  *StoreCategory `json:"product_cate" gorm:"foreignKey:CateId;association_autoupdate:false;association_autocreate:false"`
    Price        float64        `json:"price" valid:"Required;"`
    VipPrice     float64        `json:"vip_price" valid:"Required;"`
    OtPrice      float64        `json:"ot_price" valid:"Required;"`
    Postage      float64        `json:"postage" valid:"Required;"`
    UnitName     string         `json:"unit_name" valid:"Required;"`
    Sort         int16          `json:"sort" valid:"Required;"`
    Sales        int            `json:"sales" valid:"Required;"`
    Stock        int            `json:"stock" valid:"Required;"`
    IsShow       *int8          `json:"is_show" valid:"Required;"`
    IsHot        *int8          `json:"is_hot" valid:"Required;"`
    IsBenefit    *int8          `json:"is_benefit" valid:"Required;"`
    IsBest       *int8          `json:"is_best" valid:"Required;"`
    IsNew        *int8          `json:"is_new" valid:"Required;"`
    Description  string         `json:"description" valid:"Required;"`
    IsPostage    *int8          `json:"is_postage" valid:"Required;"`
    GiveIntegral int            `json:"give_integral" valid:"Required;"`
    Cost         float64        `json:"cost" valid:"Required;"`
    IsGood       *int8          `json:"is_good" valid:"Required;"`
    Ficti        int            `json:"ficti" valid:"Required;"`
    Browse       int            `json:"browse" valid:"Required;"`
    IsSub        *int8          `json:"is_sub" valid:"Required;"`
    TempId       int64          `json:"temp_id" valid:"Required;"`
    SpecType     int8           `json:"spec_type" valid:"Required;"`
    IsIntegral   *int8          `json:"isIntegral" valid:"Required;"`
    Integral     int32          `json:"integral" valid:"Required;"`
    BaseModel
    }

    //定义商品消息结构
    type ProductMsg struct {
    Operation string `json:"operation"`
    *StoreProduct
    }
    切换web服务器
    现在我们启动工程使用的是 tomcat 服务器,那能不能不使用 tomcat 而使用 jetty 服务器,jetty 在我们 maven 高级时讲 maven 私服使用的服务器。而要切换 web 服务器就需要将默认的 tomcat 服务器给排除掉,怎么排除呢?使用 exclusion 标签
    func (e *StoreProductController) Post(c *gin.Context) {
    var (
    dto  dto2.StoreProduct
    appG = app.Gin{C: c}
    )
    httpCode, errCode := app.BindAndValid(c, &dto)
    if errCode != constant.SUCCESS {
    appG.Response(httpCode, errCode, nil)
    return
    }
    productService := product_service.Product{
    Dto: dto,
    }
    model, err := productService.AddOrSaveProduct()
    if err != nil {
    appG.Response(http.StatusInternalServerError, constant.FAIL_ADD_DATA, nil)
    return
    }

    //发消息队列
    defer func() {
    operation := product.OperationCreate
    if dto.Id > 0 {
    operation = product.OperationUpdate
    }
    productMsg := models.ProductMsg{
    operation,
    &model,
    }
    msg, _ := json.Marshal(productMsg)
    p, o, e := mq.GetKafkaSyncProducer(mq.DefaultKafkaSyncProducer).Send(&sarama.ProducerMessage{
    Topic: product.Topic,
    Key:   mq.KafkaMsgValueStrEncoder(strconv.FormatInt(dto.Id, 10)),
    Value: mq.KafkaMsgValueEncoder(msg),
    },
    )
    if e != nil {
    global.LOG.Error("send product msg error ", e, "partition :", p, "offset :", o, "id :", dto.Id)
    }
    }()

    appG.Response(http.StatusOK, constant.SUCCESS, nil)

    }


  • Wayking RadarSensors_LRR7710_中英文产品手册
    Wayking RadarSensors_LRR7710_中英文产品手册
  • 工业级液晶显示控制芯片RA8889ML3N原理图
    TFT-LCD液晶显示控制芯片RA8889ML3N的优势:
    低功耗及功能强大:这款芯片最大支持分辨率为1366x2048,内置128Mb SDRAM,可为内容显示进行快速刷新,同时内置视频解码单元,支持JPEG/AVI硬解码播放,为普通单片机实现视频播放提供可能。
    支持多种接口:RA8889ML3N支持MCU端的8080/6800 8/16-bit 非同步并列接口和3/4线SPI及IIC串列接口,以及最大驱动1366x800分辨率的TFT LCD。
    显示功能强大:RA8889ML3N提供多段的显示记忆体缓冲区段,支持多图层功能,并提供画中画(PIP)、支持透明度控制与显示旋转镜像等显示功能。
    应用范围广:这款芯片广泛应用于自动化控制设备、电力监测控制、测量检测仪器仪表、电教设备、智能家电、医疗检测设备、车用仪表及工控自动化等领域。
  • 首个基于Transformer的分割检测+视觉大模型视频课程(附源码+课件)
    众所周知,视觉系统对于理解和推理视觉场景的组成特性至关重要。这个领域的挑战在于对象之间的复杂关系、位置、歧义、以及现实环境中的变化等。作为人类,我们可以很轻松地借助各种模态,包括但不仅限于视觉、语言、声音等来理解和感知这个世界。现如今,随着 Transformer 等关键技术的提出,以往看似独立的各个方向也逐渐紧密地联结到一起,组成了“多模态”的概念。

    多功能
    通过引入灵活的提示引擎,包括点、框、涂鸦 (scribbles)、掩模、文本和另一幅图像的相关区域,实现多功能性;
    可组合
    通过学习联合视觉-语义空间,为视觉和文本提示组合实时查询,实现组合性,如图1所示;
    可交互
    通过结合可学习的记忆提示进行交互,实现通过掩模 引导的交叉注意力保留对话历史信息;
    语义感知
    通过使用文本编码器对文本查询和掩模标签进行编码,实现面向开放词汇分割的语义感知。

    超大规模视觉通用感知模型由超大规模图像、文本主干网络以及多任务兼容解码网络组成,它基于海量的图像和文本数据构成的大规模数据集进行预训练,用于处理多个不同的图像、图像-文本任务。此外,借助知识迁移技术能够实现业务侧小模型部署。

    超大规模视觉通用感知模型面临的挑战:
    (1)网络参数量庞大,通常超十亿参数,训练稳定性、收敛性、过拟合等问题相较于小网络挑战大很多。
    (2)原始数据集包含数十亿异质低质量图片与海量文本,多步训练以利用异质的多模态多任务数据,流程复杂,存在灾难性遗忘,难以定位精度等问题。
    (3)实验成本高,通常需要上千块GPU并行训练数周,需要研究者有敏锐的分析能力和扎实的知识基础。
    (4)工程挑战多,海量数据的吞吐,大型GPU集群上的并行算法,超大参数量模型的内存管理。

    提示工程
    大多数视觉数据集由图像和相应文本标签组成,为了利用视觉语言模型处理视觉数据集,一些工作已经利用了基于模版的提示工程,
    text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]  
    text_tokens = clip.tokenize(text_descriptions).cuda()

    除了此类大型视觉语言基础模型外,一些研究工作也致力于开发可以通过视觉输入提示的大型基础模型。例如,最近 META 推出的 SAM 能够执行与类别无关的分割,给定图像和视觉提示(如框、点或蒙版),指定要在图像中分割的内容。这样的模型可以轻松适应特定的下游任务,如医学图像分割、视频对象分割、机器人技术和遥感等

    从模型训练、模型分发、模型商业化,美图体系化地同创作者和开发者共建模型生态:

    (1)模型训练:提供二次训练能力,并持续不断地为创作者提供服务,包括培训、社区和模型创作大赛。

    (2)模型分发:创作者和开发者共建的模型可以在美图的产品内进行分发,在分发过程中持续优化模型。

    (3)模型商业化:行业客户可通过 MiracleVision 的 API 和 SDK 进行商业使用,创作者和开发者通过商业合作获得经济收益。
    通用视觉-语言学习的基础模型
    UNITER:结合了生成(例如掩码语言建模和掩码区域建模)和对比(例如图像文本匹配和单词区域对齐)目标的方法,适用于异构的视觉-语言任务。
    Pixel2Seqv2:将四个核心视觉任务统一为像素到序列的接口,使用编码器-解码器架构进行训练。
    Vision-Language:使用像 BART 或 T5 等预训练的编码器-解码器语言模型来学习不同的计算机视觉任务。
    模型整体结构上,抛弃了CNN,将 BERT 原版的 Transformer 开箱即用地迁移到分类任务上面,在使用大规模训练集的进行训练时,取得了极好的效果。
    同时,在大规模数据集上预训练好的模型,在迁移到中等数据集或小数据集的分类任务上以后,也能取得比CNN更优的性能。
    模型整体结构如下图所示,完全使用原始 BERT 的 Transformer 结构,主要是对图片转换成类似 token 的处理,原文引入了一个 patch 的概念,首先把图像划分为一个个的 patch,然后将 patch 映射成一个 embedding,即图中的 linear projection 层,将输入转换为类似 BERT 的输入结构,然后加上 position embedding,这里的 position 是1D的,最后加上一个learnable classification token 放在序列的前面,classification由 MLP 完成。

    这里我们用 RAM 提取了图像的语义标签,再通过将标签输入到 Grounding-DINO 中进行开放世界检测,最后再通过将检测作为 SAM 的提示分割一切。目前视觉基础大模型可以粗略的归为三类:
    textually prompted models, e.g., contrastive, generative, hybrid, and conversational;
    visually prompted models, e.g., SAM, SegGPT;
    heterogeneous modalities-based models, e.g., ImageBind, Valley.

    CoCa 通过将所有标签简单地视为文本,对 web-scale alt-text 和 annotated images 进行了从头开始端到端的预训练,无缝地统一了表示学习的自然 语言 监督。因此,CoCa 在广泛的下游任务上实现了最先进的性能,零样本传输或最小的任务特定适应, 跨越视觉识别(ImageNet,Kinetics-400/600/700,Moments-in-Time )、跨模式检索(MSCOCO、Flickr30K、MSR-VTT)、 多模式理解(VQA、SNLI-VE、NLVR2)和图像字幕(MSCOCO、NoCaps)。在 ImageNet 分类中,CoCa 获得了 86.3% 的 zero-shot top-1 准确率, frozen encoder and finetune classifier 是 90.6%,finetune encoder 可以到 91.0%。

    截止目前国内外已经发布了许多包括 NLP, CV 和 多模态在内的大规模模型,但是这些模型在应用落地上还是有待进一步探究的,目前应用落地较好的有华为 的盘古,在电网和金融圈都有应用;智源的悟道系列在诗词图文上都有广泛应用,可以帮助学生看图写作,根据文字生成插图等;百度的文心也发布了在金融方 面的应用。但截止目前为止大模型在实际中的应用还不是很理想,大模型发展的初衷是使用一个预训练好的大模型代替一堆小作坊似的根据不同任务训练的小模 型,通过模型蒸馏知识迁移等技术在小模型上使用少量数据集达到超过原来小模型性能的目标。CV 大模型在应用上的一个难点是与实际应用相结合,目前社会中 用的较多的视觉相关的深度学习模型主要包括物体检测,人脸识别以及缺陷检测(部分)相比 NLP 模型在实际中的使用少很多,因此将 CV 模型与实际生产相 结合发现更多的应用场景很关键。另外一个 CV 大模型应用的难点就是如何快速高效的使用蒸馏和知识迁移技术提升下游任务的性能,这两点难题的解决在 CV 大模型的实际应用中都刻不容缓。

    总结起来,将大模型应用于更高分辨率的下游视觉任务具有以下好处:提高感知能力、改善定位精度、提升语义理解、改善细节保留和边缘清晰度、增加鲁棒性和泛化能力,以及推动研究进展。这些好处使得大模型在处理高分辨率图像时能够获得更准确、更细致和更真实的结果。随着深度学习和计算资源的不断发展,我们可以期待更先进的大模型和相关技术的出现,进一步推动计算机视觉在高分辨率图像任务中的应用和突破

  • 风力发电机组机结构与原理-2018年-赵万清
    风力发电机组机结构与原理,中国电力出版社,PDF版本。
  • 首个基于Transformer的分割检测+视觉大模型视频课程(23年新课+源码+课件)
    自动驾驶是高安全型应用,需要高性能和高可靠的深度学习模型,Vision Transformer是理想的选摔。现在主流的自动驾驶感知算法基本都使用了Vision Transformer相关技术,比如分割、2D/3D检测,以及最近大火的大模型 (如SAM),Vision Transformer在自动驾驶领域的落地方面遍地开花。5一方面,在自动驾驶或图像处理相关算法岗位的面试题中,Vision Transformer是必考题,需要对其理论知识有深入理解,并且在项目中真实的使用过相关技术。

    Transformer出自于Google于2017年发表的论文《Attention is all you need》,最开始是用于机器翻译,并且取得了非常好的效果。但是自提出以来,Transformer不仅仅在NLP领域大放异彩,并且在CV、RS等领域也取得了非常不错的表现。尤其是2020年,绝对称得上是Transformer的元年,比如在CV领域,基于Transformer的模型横扫各大榜单,完爆基于CNN的模型。为什么Transformer模型表现如此优异?它的原理是什么?它成功的关键又包含哪些?本文将简要地回答一下这些问题。

    我们知道Transformer模型最初是用于机器翻译的,机器翻译应用的输入是某种语言的一个句子,输出是另外一种语言的句子。
    var i *int = nil
    fmt.Println("i.size:", unsafe.Sizeof(i)) //8

    var i8 *int8 = nil
    fmt.Println("i8.size:", unsafe.Sizeof(i8)) //8

    var s *string = nil
    fmt.Println("s.size:", unsafe.Sizeof(s)) //8

    var ps *struct{} = nil
    fmt.Println("ps.size:", unsafe.Sizeof(ps)) //8

    var si []int = nil
    var si1 []int = nil
    fmt.Println("si.size:", unsafe.Sizeof(si)) //24

    var ii interface{} = nil
    fmt.Println("ii.size:", unsafe.Sizeof(ii)) //16
    我们以生成我,爱,机器,学习,翻译成<bos>,i,love,machine,learning,<eos>这个例子做生成过程来解释。
    训练:

    把“我/爱/机器/学习”embedding后输入到encoder里去,最后一层的encoder最终输出的outputs [10, 512](假设我们采用的embedding长度为512,而且batch size = 1),此outputs 乘以新的参数矩阵,可以作为decoder里每一层用到的K和V;
    将<bos>作为decoder的初始输入,将decoder的最大概率输出词向量A1和‘i’做cross entropy(交叉熵)计算error。
    将<bos>,“i” 作为decoder的输入,将decoder的最大概率输出词 A2 和‘love’做cross entropy计算error。
    将<bos>,“i”,“love” 作为decoder的输入,将decoder的最大概率输出词A3和’machine’ 做cross entropy计算error。
    将<bos>,“i”,"love ",“machine” 作为decoder的输入,将decoder最大概率输出词A4和‘learning’做cross entropy计算error。
    将<bos>,“i”,"love ",“machine”,“learning” 作为decoder的输入,将decoder最大概率输出词A5和终止符做cross entropy计算error。
    那么并行的时候是怎么做的呢,我们会有一个mask矩阵在这叫seq mask,因为他起到的作用是在decoder编码我们的target seq的时候对每一个词的生成遮盖它之后的词的信息。
    func main() {
    s := []string{"a", "b", "c"}
    fmt.Println("s:origin", s)
    changes1(s)
    fmt.Println("s:f1", s)

    changes2(s)
    fmt.Println("s:f2", s)

    changes3(s)
    fmt.Println("s:f3", s)
    }

    func changes1(s []string) {
    var tmp = []string{"x", "y", "z"}
    s = tmp
    }

    func changes2(s []string) {
    // item只是一个副本,不能改变s中元素的值
    for i, item := range s {
    item = "d"
    fmt.Printf("item=%s;s[%d]=%s", item, i, s[i])
    }
    }

    func changes3(s []string) {
    for i := range s {
    s[i] = "d"
    }
    }

    首先我们需要为每个输入向量(也就是词向量)创建3个向量,分别叫做Query、Key、Value。那么如何创建呢?我们可以对输入词向量分别乘上3个矩阵来得到Q、K、V向量,这3个矩阵的参数在训练的过程是可以训练的。注意Q、K、V向量的维度是一样的,但是它们的维度可以比输入词向量小一点,比如设置成64,其实这步也不是必要的,这样设置主要是为了与后面的Mulit-head注意力机制保持一致(当使用8头注意力时,单头所处理的词向量维度为512/8=64,此时Q、K、V向量与输入词向量就一致了)。我们假设输入序列为英文的"Thinking Machines"
    想要深度理解Attention机制,就需要了解一下它产生的背景、在哪类问题下产生,以及最初是为了解决什么问题而产生。

    首先回顾一下机器翻译领域的模型演进历史:

    机器翻译是从RNN开始跨入神经网络机器翻译时代的,几个比较重要的阶段分别是: Simple RNN, Contextualize RNN,Contextualized RNN with attention, Transformer(2017),下面来一一介绍。

    「Simple RNN」 :这个encoder-decoder模型结构中,encoder将整个源端序列(不论长度)压缩成一个向量(encoder output),源端信息和decoder之间唯一的联系只是: encoder output会作为decoder的initial states的输入。这样带来一个显而易见的问题就是,随着decoder长度的增加,encoder output的信息会衰减。
    func main(){
    var c = make(chan int)
    fmt.Printf("c.pointer=%p\n", c) //c.pointer=0xc000022180
    go func() {
    c <- 1
    addChannel(c)
    close(c)
    }()

    for item := range c {
    //item: 1
    //item: 2
    fmt.Println("item:", item)
    }
    }

    func addChannel(done chan int) {
    done <- 2
    fmt.Printf("done.pointer=%p\n", done) //done.pointer=0xc000022180
    }
    在测试模型的时候,Test:decoder没有label,采用自回归一个词一个词的输出,要翻译的中文正常从encoder并行输入(和训练的时候一样)得到每个单词的embedding,然后decoder第一次先输入bos再此表中的id,得到翻译的第一个单词,然后自回归,如此循环直到预测达到eos停止标记
    type visit struct {
    a1  unsafe.Pointer
    a2  unsafe.Pointer
    typ Type
    }

    func deepValueEqual(v1, v2 Value, visited map[visit]bool) bool {
    if !v1.IsValid() || !v2.IsValid() {
    return v1.IsValid() == v2.IsValid()
    }
    if v1.Type() != v2.Type() {
    return false
    }

    // We want to avoid putting more in the visited map than we need to.
    // For any possible reference cycle that might be encountered,
    // hard(v1, v2) needs to return true for at least one of the types in the cycle,
    // and it's safe and valid to get Value's internal pointer.
    hard := func(v1, v2 Value) bool {
    switch v1.Kind() {
    case Pointer:
    if v1.typ.ptrdata == 0 {
    // not-in-heap pointers can't be cyclic.
    // At least, all of our current uses of runtime/internal/sys.NotInHeap
    // have that property. The runtime ones aren't cyclic (and we don't use
    // DeepEqual on them anyway), and the cgo-generated ones are
    // all empty structs.
    return false
    }
    fallthrough
    case Map, Slice, Interface:
    // Nil pointers cannot be cyclic. Avoid putting them in the visited map.
    return !v1.IsNil() && !v2.IsNil()
    }
    return false
    }

    if hard(v1, v2) {
    // For a Pointer or Map value, we need to check flagIndir,
    // which we do by calling the pointer method.
    // For Slice or Interface, flagIndir is always set,
    // and using v.ptr suffices.
    ptrval := func(v Value) unsafe.Pointer {
    switch v.Kind() {
    case Pointer, Map:
    return v.pointer()
    default:
    return v.ptr
    }
    }
    addr1 := ptrval(v1)
    addr2 := ptrval(v2)
    if uintptr(addr1) > uintptr(addr2) {
    // Canonicalize order to reduce number of entries in visited.
    // Assumes non-moving garbage collector.
    addr1, addr2 = addr2, addr1
    }

    // Short circuit if references are already seen.
    typ := v1.Type()
    v := visit{addr1, addr2, typ}
    if visited[v] {
    return true
    }

    // Remember for later.
    visited[v] = true
    }

    switch v1.Kind() {
    case Array:
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Slice:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    // Special case for []byte, which is common.
    if v1.Type().Elem().Kind() == Uint8 {
    return bytealg.Equal(v1.Bytes(), v2.Bytes())
    }
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Interface:
    if v1.IsNil() || v2.IsNil() {
    return v1.IsNil() == v2.IsNil()
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Pointer:
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Struct:
    for i, n := 0, v1.NumField(); i < n; i++ {
    if !deepValueEqual(v1.Field(i), v2.Field(i), visited) {
    return false
    }
    }
    return true
    case Map:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    for _, k := range v1.MapKeys() {
    val1 := v1.MapIndex(k)
    val2 := v2.MapIndex(k)
    if !val1.IsValid() || !val2.IsValid() || !deepValueEqual(val1, val2, visited) {
    return false
    }
    }
    return true
    case Func:
    if v1.IsNil() && v2.IsNil() {
    return true
    }
    // Can't do better than this:
    return false
    case Int, Int8, Int16, Int32, Int64:
    return v1.Int() == v2.Int()
    case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
    return v1.Uint() == v2.Uint()
    case String:
    return v1.String() == v2.String()
    case Bool:
    return v1.Bool() == v2.Bool()
    case Float32, Float64:
    return v1.Float() == v2.Float()
    case Complex64, Complex128:
    return v1.Complex() == v2.Complex()
    default:
    // Normal equality suffices
    return valueInterface(v1, false) == valueInterface(v2, false)
    }
    }
    这便是encoder的整体计算流程图了,Transformer模型中堆叠了多个这样的encoder,无非就是输出连接输入罢了,常规操作。
    最后再附上一个Transformer的代码实现,读者有兴趣可以跟着自己复现一下Transformer模型的代码。
       package main

       import (
           "log"
           "sync"
       )

       func init() {
           log.SetFlags(log.Lshortfile)
       }
       func main() {
           lock := sync.Mutex{}

           //Go 1.18 新增,是一种非阻塞模式的取锁操作。当调用 TryLock() 时,
           //该函数仅简单地返回 true 或者 false,代表是否加锁成功
           //在某些情况下,如果我们希望在获取锁失败时,并不想停止执行,
           //而是可以进入其他的逻辑就可以使用TryLock()
           log.Println("TryLock:", lock.TryLock())
           //已经通过TryLock()加锁,不能再次加锁
           lock.Lock()

       }

  • RadarSensors_ARS408-21_cn数据手册
    RadarSensors_ARS408-21_cn数据手册
  • 15、贴片叠层电感应用测试中不良率高的原因
    15、贴片叠层电感应用测试中不良率高的原因
  • [完结11章]技术大牛成长课,从0到1带你手写一个数据库系统
    大家好,今天我将给大家分享关于如何开发一个数据库系统的知识,将从0到1手把手带着一步步去开发这个项目,希望我的分享对大家的学习和工作有所帮助,如果有不足的地方还请大家多多指正。

    一、什么是数据库系统
    数据库系统一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员构成 

    二、数据库管理系统的主要功能包括
    数据定义功能:DBMS提供数据定义语言(Data Definition Language,DDL),用户通过它可以方便地对数据库中的对象进行定义
    数据组织、存储和管理:DBMS要分类组织、存储和管理各种数据,包括数据字典、用户数据、数据的存取路径等。
    数据操纵功能:DBMS提-供数据操纵语言(Data Manipulation Language,DML),用户可以使用DML操纵数据,实现对数据库的基本操作,如查询、插入、删除和修改等
    数据库的事务管理和运行管理:数据库在建立、运用和维护时由数据管理系统统一管理、统一控制,以保证数据的安全性、完整性、多用户对数据的并发使用以及发生故障后的系统恢复
    数据库建立和维护功能:数据库初始数据的输入、转换功能,数据库的转储、恢复功能,数据库的重组织功能和性能监视、分析功能等。

    三、数据库系统结构
    1.1模式(概念模式或逻辑模式)
    定义:数据库中全体数据的逻辑结构特征的描述,是所有用户的公用数据库结构。

    特性:

    一个数据库只有一个模式
    模式与应用程序无关,只是数据的一个框架
    1.2子模式(外模式或用户模式)
    定义:数据库用户所见和使用的局部数据的逻辑结构和特征的描述,是用户所用的数据库结构

    特性:

    子模式是模式的子集
    一个数据库有多个子模式,每个用户至少使用一个子模式
    同一个用户可以使用不同的子模式,每个子模式可为不同的用户所用
    1.3内模式(存储模式)
    定义:是数据物理结构和存储方法的描述。它是整个数据库的最低层结构的表示。

    特性:

    一个数据库只有一个内模式,内模式对用户透明
    一个数据库由多种文件组成,如用户数据文件,索引文件及系统文件
    内模式设计直接影响数据库的性能

    以下是开发流程:
    在idea中构建如下几个子模块工程:
    @PostMapping("/doLogin")
    @ApiOperation(value = "一键注册登录接口", notes = "一键注册登录接口", httpMethod = "POST")
    public GraceJSONResult doLogin(HttpServletRequest request,
                                   HttpServletResponse response,
                                   @RequestBody @Valid RegisterLoginBO registerLoginBO,
                                   BindingResult result);
    验证的字段上方可以写一些相关的注解,系统识别后会自动检查
    RegisterLoginBO.java
    public class RegisterLoginBO {

        @NotBlank(message = "手机号不能为空")
        private String mobile;
        @NotBlank(message = "短信验证码不能为空")
        private String smsCode;

        public String getMobile() {
            return mobile;
        }

        public void setMobile(String mobile) {
            this.mobile = mobile;
        }

        public String getSmsCode() {
            return smsCode;
        }

        public void setSmsCode(String smsCode) {
            this.smsCode = smsCode;
        }

        @Override
        public String toString() {
            return "RegisterLoginBO{" +
                    "mobile='" + mobile + '\'' +
                    ", smsCode='" + smsCode + '\'' +
                    '}';
        }
    }

    如果校验有问题,那么可以直接获得并且放回给前端即可。
    BaseController.java
    /**
     * 验证beanBO中的字段错误信息
     * @param result
     * @return
     */
    public Map<String, String> getErrors(BindingResult result) {
        Map<String, String> map = new HashMap<>();
        List<FieldError> errorList = result.getFieldErrors();
        for (FieldError error : errorList) {
            // 发生验证错误所对应的某一个属性
            String errorField = error.getField();
            // 验证错误的信息
            String errorMsg = error.getDefaultMessage();
            map.put(errorField, errorMsg);
        }
        return map;
    }
    一般来说,admin系统不会有主动注册功能,账号都是分配的,那么默认就会存在一个基本账户,这也是预先通过代码生成用户名和密码的。直接手动生成即可:
    <dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
    </dependency>

    同理,查询操作也是类似JPA的操作,再继承Repository后直接使用其内置api即可:
    FriendLinkMngControllerApi.java
    @PostMapping("getFriendLinkList")
    @ApiOperation(value = "查询友情链接列表", notes = "查询友情链接列表", httpMethod = "POST")
    public GraceJSONResult getFriendLinkList();
    首先可以在数据库通过写sql脚本实现查询
    SELECT
    c.id as commentId,
    c.father_id as fatherId,
    c.article_id as articleId,
    c.comment_user_id as commentUserId,
    c.comment_user_nickname as commentUserNickname,
    c.content as content,
    c.create_time as createTime,
    f.comment_user_nickname as quoteUserNickname,
    f.content as quoteContent
    FROM
    comments c
    LEFT JOIN
    comments f
    on
    c.father_id = f.id
    WHERE
    c.article_id = '2006117B57WRZGHH'
    order by
    c.create_time
    desc
    目前我们所搭建的eureka是单机单实例的注册中心,如果挂了,那么整个微服务体系完全不可以,这是不应该的,所以为了实现eureka的高可用,我们可以搭建集群。
    在进行集群构建之前,大家先参照目前的eureka再去构建一个一模一样的工程,可以取名为 springcloud-eureka-cluster。
    为集群中各个eureka节点配置host
    eureka:
      instance:
        hostname: eureka-cluster-${port:7001}    # 集群中每个eureka的名字都要唯一
      # 自定义eureka集群中另外的两个端口号
      other-node-port2: ${p2:7002}
      other-node-port3: ${p3:7003}
      client:
    #    register-with-eureka: false
    #    fetch-registry: false
        service-url:
          # 集群中的每个eureka单实例,都需要相互注册到其他的节点,在此填入集群中其他eureka的地址进行相互注册
          defaultZone: http://eureka-cluster-${eureka.other-node-port2}:${eureka.other-node-port2}/eureka/,http://eureka-cluster-${eureka.other-node-port3}:${eureka.other-node-port3}/eureka/
    我们自己测试的时候时间可以设置为10秒内有10次,我认定非法请求,直接限制这个ip访问15秒,15秒后释放。(像有的网站会出现二维码让你扫描通过,或者手机验证码或者人机交互判断你当前是否是人还是机器,因为有可能是爬虫请求)
    开发步骤:
    首先在yml中设置基本参数:
    @Override
    public Object run() throws ZuulException {
        System.out.println("执行【IP黑名单】Zuul过滤器...");

        // 获得上下文对象requestContext
        RequestContext requestContext = RequestContext.getCurrentContext();
        HttpServletRequest request = requestContext.getRequest();

        // 获得ip
        String ip = IPUtil.getRequestIp(request);

        /**
         * 需求:
         * 判断ip在10秒内请求的次数是否超过10次,
         * 如果超过,则限制访问15秒,15秒过后再放行
         */
        final String ipRedisKey = "zuul-ip:" + ip;
        final String ipRedisLimitKey = "zuul-ip-limit:" + ip;

        // 获得剩余的限制时间
        long limitLeftTime = redis.ttl(ipRedisLimitKey);
        // 如果剩余时间还存在,说明这个ip不能访问,继续等待
        if (limitLeftTime > 0) {
            stopRequest(requestContext);
            return null;
        }

        // 在redis中累加ip的请求访问次数
        long requestCounts = redis.increment(ipRedisKey, 1);

        // 从0开始计算请求次数,初期访问为1,则设置过期时间,也就是连续请求的间隔时间
        if (requestCounts == 1) {
            redis.expire(ipRedisKey, timeInterval);
        }

        // 如果还能取得到请求次数,说明用户连续请求的次数落在10秒内
        // 一旦请求次数超过了连续访问的次数,则需要限制这个ip了
        if (requestCounts > continueCounts) {
            // 限制ip访问一段时间
            redis.set(ipRedisLimitKey, ipRedisLimitKey, limitTimes);

            stopRequest(requestContext);
        }

        return null;
    }

    private void stopRequest(RequestContext requestContext){
        // 停止继续向下路由,禁止请求通信
        requestContext.setSendZuulResponse(false);
        requestContext.setResponseStatusCode(200);
        String result = JsonUtils.objectToJson(
                GraceJSONResult.errorCustom(
                        ResponseStatusEnum.SYSTEM_ERROR_BLACK_IP));
        requestContext.setResponseBody(result);
        requestContext.getResponse().setCharacterEncoding("utf-8");
        requestContext.getResponse().setContentType(MediaType.APPLICATION_JSON_VALUE);
    }
    上面这些都是通过不同key要执行多次才能得到结果,一般来说我们会使用es的aggs功能做聚合统计,会更好。
    通过一个脚本来统计男女数量:
    POST http://192.168.1.203:9200/fans/_doc/_search
    {
        "size": 0,
        "query":{
            "match":{
                "writerId":"201116760SMSZT2W"
            }
        },
        "aggs": {
            "counts": {
                "terms": {
                    "field": "sex"
                }
            }
        }
    }

    以下就是数据库系统开发的整个流程讲解,感谢大家的阅读

  • 13、如何解决直插差模电感的异响问题
    13、如何解决直插差模电感的异响问题
  • CS5511数据手册
    CS5511是一个将DP/eDP输入转换为LVDS信号的桥接芯片,此外,CS5511可以用作在DP/eDP输入到DP/eDP输出场景中桥接芯片
  • By Toradex胡珊逢 简介 双屏显示在显示设备中有着广泛的应用,可以面向不同群体展示特定内容。文章接下来将使用 Verdin iMX8M Plus 的 Arm 计算机模块演示如何方便地在 Toradex 的 Linux BSP 上实现在两个屏幕上显示独立的 Qt 应用。 硬件介绍 软件配置 Verdin iMX8M Plus 模块使用 Toradex Multimedia Reference Image V6.4.0 版本,其包含 Qt5.15 相关运行环境。默认系统中已经使
    hai.qin_651820742 2023-12-01 11:53 111浏览
  • 在电力系统中,过电压保护器是一种重要的设备,它对电力设备的安全运行具有重要的作用。下面我们来了解一下过电压保护器的基本结构。过电压保护器通常由三个主要部分组成:间隙、非线性元件和触发器。1. 间隙:间隙是过电压保护器的基本结构之一,它是由两个金属电极组成的,通常采用球形或棒形结构。间隙的间距通常在几毫米到几厘米之间,它能够承受一定的电压,并在过电压条件下进行放电。2. 非线性元件:非线性元件是过电压保护器的另一个重要组成部分。它是一种特殊的电阻器,能够在高电压下呈现出非线性的特性。当电压超过一定
    保定众邦电气 2023-11-30 14:49 173浏览
  • 前言 在网络部署之后和业务开展之前,运营商迫切希望了解当前网络的性能状态,以便为商业规划和业务推广提供必要的基础数据支持。因此,高可靠性和高精确度的性能测试方法对于运营商评判网络性能的优劣,显得尤为重要,而RFC 2544等传统测试标准已不足于鉴定当今的服务等级协议(SLA)。SLA是服务提供商(如ISP)及其最终用户之间的协议,它规定以太网服务的开通或验证必须进行测量,且必须达到SLA的规范要求。目前,对以太网服务进行测试和故障诊断的最佳选择无疑是ITU-T Y.1564标准。 &
    信而泰市场部 2023-11-30 15:06 89浏览
  • 随着汽车电子进入电动化+智能网联的时代,新能源、车联网、智能化、电动化四个领域带来了CAN数据的需求,企业车队管理需要数据,汽车运营需要数据,改装、解码、匹配工具打造需要数据,现在就连简单的LED汽车照明控制,也需要匹配数据。这一切,逃脱不了CAN、LIN、SENT、BSD、MOST各种协议下,不同ECU控制单元在不同年份,不同款式下的数据,可以这么说,在新能源这个前提下,我们要做的工作和要做的事情可能要更为复杂、多变。 前日,我拿出一份13年左右丰田的CAN协议,里边包括车灯控制、车
    lauguo2013 2023-11-30 15:45 109浏览
  • 作者:Shawn Prestridge,IAR资深现场应用工程师 / 美国FAE团队负责人 安全一直都是一个非常热门的话题,似乎每周都会听到这样的消息:某某公司如何被入侵,数百万用户的数据被泄露。 我们看到这么多的安全问题,部分原因在于我们对待安全的方式:安全性通常被认为是事后考虑的问题,是在开发结束时才添加到设备上的东西。然而,复杂的系统,尤其是嵌入式系统,有一个很大的攻击面,这让攻击者有机可乘,能够在“盔甲”上找到破绽。如果你去研究大部分黑客试图入侵系统的方式,你很快就会发现,在他们的武
    电子科技圈 2023-11-30 14:43 119浏览
  •    电源连接器的插针遭受损坏的情况非常普遍,这种故障会让连接器的电流传输受到影响,进而影响设备的正常使用,那是什么因素导致电源连接器的插针遭到损坏呢?下面Amass将为您分析其中的原因。   1、应用环境高温 1. 在高温环境下,电源连接器插针易受腐蚀影响,形成氧化层,损失接触压力,甚至可能发生接头烧损情况。对于这种环境,电源连接器需要具备耐高温性能,不仅需满足环境温度要求,还须考虑其在工作状态下的热量散发。  
    艾迈斯电子 2023-11-30 16:33 125浏览
  •    本文介绍在ALPS平台上进行SSL测试的内容和方法   什么是SSL SSL全称是Secure Sockets Layer,指安全套接字协议,为基于TCP的应用层协议提供安全连接;SSL介于TCP/IP协议栈的第四层和第五层之间,广泛用于电子商务、网上银行等。 SSL协议有三个版本,其中SSL2.0和3.0曾被广泛使用,其中SSLv3.0自1996提出并得到大规模应用成为了事实上的标准,在2015年才被弃用。1999年,IETF收纳了SSLv3.0并
    信而泰市场部 2023-11-30 15:08 102浏览
  • Achronix推出基于FPGA的加速自动语音识别解决方案 提供超低延迟和极低错误率(WER)的实时流式语音转文本解决方案,可同时运行超过1000个并发语音流2023年11月——高性能FPGA芯片和嵌入式FPGA(eFPGA IP)领域的领先企业Achronix半导体公司日前自豪地宣布:正式推出Achronix与Myrtle.ai合作的最新创新——基于Speedster7t FPGA的自动语音识别(ASR)加速方案。这一变革性的解决方案,实现了高精度和快速响应,可将超过1000个并发的实时
    电子科技圈 2023-11-30 11:52 157浏览
  • 印刷部分 这本书印刷和普通书籍不太一样,类似笔记本的手写体印刷和笔记的网格,有亲近感和新鲜感内容部分 分为通信工程 ;传感器工程;磁传感器工程;太阳电池功能几大部分通信电路是一种用于传输信息的电子电路,可以用于无线通信、有线通信和网络通信等各种通信系统中。传感器电路则是用于感知和测量环境参数的电路,可以探测光、温度、压力、湿度、运动等各种物理量。在学习通信电路方面,可能会接触到模拟通信电路和数字通信电路。模拟通信电路主要涉及模拟信号的传输和处理,如调制解调、信号放大、滤波等。数字通信电路则涉及数
    陇南有只大花猫 2023-11-30 19:01 198浏览
  • 高低温探针台是一种用于材料科学、物理、化学等领域的实验设备,主要用于在高温和低温环境下对材料进行各种实验和研究。下面是高低温探针台的工作原理。工作原理是将样品放置在加热和冷却组件上,然后使用各种测量仪器对其进行实验和测量。具体来说,其工作流程如下:将样品放置在加热和冷却组件上;启动加热系统,将样品加热到所需的温度;启动制冷系统,将冷却组件降温到所需的温度;通过各种测量仪器对样品进行实验和测量;记录实验数据并进行分析和处理;结束实验后,关闭加热和制冷系统,并解除真空状态,取出样品。总之,高低温探针
    锦正茂科技 2023-12-01 14:50 101浏览
  •     按照 IPC术语,连接盘/Land 是指一块导体,通常用于连接和/或固定元器件的导电部分。    为了增强孔的机械强度,所有的金属化孔或者镀覆孔,在穿过每一层铜箔时,都应该有连接盘,连接盘的形状不限。前面提过的孔环也是连接盘的一种形式。在允许的条件下,孔环和连接盘的尺寸都要尽量大一些。    前面提到过,铜层图案(连接盘)和孔是在不同的工序制作的。由于加工公差的存在,用常见的圆形连接盘和圆孔来说,并不能保证孔和连接盘保持精确的同
    电子知识打边炉 2023-11-30 21:32 146浏览
  • 听力危机不可不慎,助听器市场的发展概况根据世界卫生组织WHO于2021年所发布的世界听力报告(World report on hearing)统计,全球目前有20%左右的听损人口;其中「轻度」与「中度」听损人口就占了大约15亿人左右。台湾方面,根据2021年卫生福利部统计处的数据显示,台湾则约有12万人有听力损失的问题,其中更有高达56% (约71,543人)确诊为轻度听损。足以看出听力受损问题已逐渐成为全球新兴的健康议题。听力损失的成因及轻重程度因人而异,但无论如何,或多或少都会影响到我们的日
    百佳泰测试实验室 2023-11-30 17:26 118浏览
  • 非接触精密洁净设备在锂电池领域有广泛的应用,主要用于生产制造过程中的Roll to Roll及sliting工艺、电芯预处理等环节。针对卷板、薄膜、膜片制造工艺中的大宽幅、裁切后边部处理再清洁、除异物、毛刺等需求,非接触精密洁净设备通过高旋轴与特制气嘴的优化排列,可满足现有干燥炉、再复合、精度提升等新工艺中的洁净度要求。具体的应用环节如下:锂电池生产过程中的Roll to Roll工艺和sliting工艺,非接触精密洁净设备通过高精度的洁净环境和控制,保证了锂电池的制造质量和安全性。电芯预处理过
    SHLZ 2023-11-30 11:49 146浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦