不到10万块续航500公里!这家新品牌在下什么棋?丨车企零距离

原创 电动车公社 2023-09-27 23:50

关注「电动车公社」

和我们一起重新思考汽车


大家好,我是电动车公社的社长。


2023年开年以来,新能源车企们的大新闻可谓是层出不穷。除了多款新车上市/预售/调价的消息会和大家息息相关,也有不少车企近期的大动作会影响到大家的购买和投资决策。当然,其中也不乏小伙伴们感兴趣的事件。


鉴于这些事件无法写成我们日常的深度分析,简短的每日新闻也没办法为大家答疑解惑。作为身处一线的新能源媒体人,社长决定增开一档新栏目《车企零距离》,用问答的形式去“盘问”车企高管们,带来最前沿的独家报道。只要他们讲完大家最关心的话题——




今天想和大家聊聊的,是前段时间推出“冠军版”车型的江淮钇(yǐ)为。


这个借助全球首个稀土金属元素钇玩了个“谐音梗”的品牌,估计大家还有些陌生。它和埃安&广汽、欧拉&长城之间的关系有些类似,是江淮汽车集团在今年4月发布的新能源品牌。



它诞生之初的打法,也和埃安/欧拉有几分相像:都是主打A级家庭用车,都只做纯电车型,也都推出了新的纯电平台和产品规划。


但在竞争如此激烈的新能源市场中,也有不少人提出了质疑:


江淮造车,究竟有没有技术?江淮钇为2023年才入局,会不会太晚了?能站稳脚跟吗?


所以前段时间,我也参观了位于安徽省的江淮钇为工厂,还采访到了江淮钇为的董事长夏顺礼,目的就是搞清楚这些问题的答案。



所以在这篇《车企零距离》里,你能看到这些:


  • 钇为是谁?江淮为什么要推出钇为?

  • 钇为的造车水平到底行不行?

  • 钇为为什么只做A级车?

  • 未来,钇为还有哪些规划?


如果小伙伴们意犹未尽,或是对哪吒还有其他有问题的话,也欢迎在评论区里留言,社长一定知无不言,言无不尽





1、江淮钇为,何许人也?
这个问题说来话长,也夹杂着不少历史遗留问题,我尽量用简洁的语言跟大家讲明白


自打盘古开天辟地……啊不,是江淮汽车制造厂从1964年创办以来,主打的就是商用车市场。国内第一台客车专用底盘就是江淮制造的,也对外出口了不少物美价廉的商用车。


但随着2001年中国加入世贸组织,江淮也动了造乘用车的心思:借着商用车的底子造了一台叫瑞风的MPV,同样主打一个物美价廉。


直到现在,这台车卖得都算还不错。


但相比江淮在商用车上取得的成绩,江淮乘用车的声量并不算高。


因此乘着新能源的东风,江淮在2007年开启了新能源技术研发,并且推出了7年间累计销量25万台的iEV系列,积累新能源领域的造车经验。


但这时,江淮发现靠着现有的技术积累,很难在乘用车领域和合资品牌竞争。


时任江淮董事长的安进大手一挥,这边和蔚来签约制造高端新能源车,也就是尾标上的“江淮蔚来”;那边又和大众合资完善造车体系,也就是“江淮大众”。


新的合资品牌,也被命名为思皓,最早专注于制造小型纯电轿车。


但好景不长,江淮和大众一个要吸取造车经验、一个要补足新能源和智能化的短板,目标似乎并不统一。


最终大众增资至75%控股江淮大众,并将其更名为大众安徽,并且获得了江淮50%的股份;而思皓品牌及相关产品则是留给了江淮。


所以后来的思皓也开始背靠铺开的渠道卖燃油车,也成了这两年江淮乘用车销量增长的助力之一。


相信大家也知道,现在新能源行业发展如火如荼,江淮必然需要专属的新能源品牌。刚巧安徽省正在打造万亿级别的新能源产业集群,国家也给了江淮一个混改的名额——

因此顺水推舟地,江淮拉来了安徽省安庆市国资委,双方各自持股40%,成立了钇威汽车科技有限公司;剩余的20%资金由其他合作伙伴提供。这就是钇为这个品牌的由来了。


虽然官方的说法是钇为和思皓是包含的关系、不是并列的关系,可以简单理解为江淮是爷爷、思皓是爸爸、钇为是儿子。但我觉得,钇为更像是江淮在新能源领域的“亲儿子”,这座零碳智慧工厂就是最好的证明。



2、江淮工厂,真比保时捷强?


客观来讲,我没去过保时捷德国工厂,所以没有发言权(狗头保命)。


但和新势力的工厂相比,钇为工厂还是有一些可圈可点的地方的,也倾注了江淮的很多心血,哪怕很多工业设备的确没那么高端(毕竟不是做高端车的工厂)。


就拿自动化来说吧,我们知道汽车制造分为“冲压、焊接、涂装、总装”四大工艺,钇为工厂基本只有在最后的总装车间才需要手工装配,其他流程几乎都由机器人来完成。


像是国内基本已经普及了的智慧制造——实时监控生产状态、采集质量数据、溯源零部件生产流程,钇为工厂也都有了。


总装的流水线,也参考了蔚来工厂的布局。目前工厂的生产节拍是30JPH,也就是2分钟下线一台新车,年产能约20万辆。跑满的话生产节拍能达到60JPH,年产能40万辆。


而能够提高生产效率的“空中走廊”、蓝光定位系统安装天幕、德国的VDA质量管理体系乃至不同车型共线生产这些,则是借鉴了大众工厂的经验。


整体看下来,作为非高端品牌的汽车工厂还是比较先进的,具备工业4.0的水准。



3、钇为工厂真的零碳吗?


个人认为,这座工厂离真正的零碳还有一定差距,但应该已经接近了。


从数据来看,厂房的屋顶有23万㎡,每年能够通过光伏板发电1405万度,这是开源;节流的部分则是用上了车漆中涂层的免烘干工艺和循环风空调、余热利用等设备,能省电大约15-30%。


而且这座工厂是依山而建的,周围的植被保存还比较完好。如果前端的用电比例能够少一些火电,做到零碳排放应该不难。



4、钇为的造车水平怎么样?


在翻阅过钇为3的技术资料之后,我发现江淮的策略其实很简单:句句不提比亚迪,又句句不离比亚迪(狗头)。


抛开冠军版以及DI平台的名号不谈,比亚迪的电驱号称八合一,在传统六合一电驱的基础上,还集成了电池管理系统BMS和整车控制器VCU;


钇为3则是号称九合一电驱,在六合一电驱的基础上增加了外放电DC/AC、PTC控制器和超级闪充功能。


先不先进先放一边,但数字上必须先压比亚迪一头


(从技术的角度来讲,多合一仅仅意味着集成度高,也就是空间利用率更高、乘员舱空间更大,虽然不直接意味着技术更先进,但确实对于我们消费者的空间体验来说会更好)


再比如,比亚迪用CTB,钇为也用CTB;


比亚迪用刀片电池,钇为用躺式圆柱蜂窝电池;


比亚迪说要把自燃从新能源车的字典上抹去,钇为也说自己的电池永不自燃


有意思的是,在这次采访中,有一位媒体朋友故意“将军”,向钇为董事长夏顺礼发问“敢不敢让媒体放话宣传永不自燃”,毕竟已经有不少品牌都在这句话上翻车了。


夏顺礼在给出肯定的答案之后,还讲了一段心酸往事。


江淮在造车路上踩过不少坑,造电动车的时候尤其多,该踩的是一个都没落下。


早期江淮的iEV5,就曾经因为电池包电气部件的生产波动出现过好几起自燃事件,甚至还把火“烧”到了三里屯。最终江淮召回了4248辆iEV5进行更换电池包,此事才告一段落。


这也给江淮敲响了警钟:可以在摸索中前进,但不能在前进中枉顾电池安全。


事件发生后,江淮也进行了几万次电池爆炸验证,最终发现相比单体容量较大的方形电芯和软包电芯,容量较小的圆柱电芯会更安全;


而且单体电芯热失控不可怕,只要电芯之间有阻燃材料避免热扩散,意外发生时及时切断短路电芯的电流、及时给电池包降温,就能保证电池包不会热失控。


这些手段,也和许多宣传“不自燃”的车企别无二致。


但具体是不是真能做到不自燃,我们还得让子弹飞一会儿,几年后再来看。



5、钇为有高端技术吗?


直白地讲,钇为的DI平台是A级车平台,并不是高端智能电动车平台。所以那些参数看起来就很炸裂的高端技术,钇为肯定是没有的,至少还停留在并未对外公布的实验室阶段。


但这并不意味着钇为落后。


很多人不知道的是,江淮其实是国内首家研究应用18650(圆柱三元&磷酸铁锂电芯)、21700(圆柱三元电芯)、以及46950(大圆柱无极耳三元电芯)的车企,也是首批启动半固态电池研发的车企。


包括钇为3,其实也留了后手:现在505km的版本用的还是小圆柱电芯,用上能量密度更高的46950大圆柱电芯之后能把续航推上600km,也会配备10分钟补充300km续航的闪充功能,而尺寸更大的钇为5续航有可能突破800km。




6、钇为为什么只做A级车?


在钇为看来,目前的新能源产业刚刚实现从0到1的过程,离成熟还很远,毕竟电池技术没有革命性突破、自动驾驶技术也没有真正到来,因此纯电动车很难成为燃油车的完美替代品。


所以结合A级车是目前最大的细分市场、以及纯电动车还是短途为主的现状,江淮钇为短期内只会专注A级车,尽可能用更低的售价,给最大基数的用户提供价值。


不管是从商业运作、还是品牌向上的角度来看,钇为依然和江淮一样是在红海市场中拼性价比的思路。



7、钇为3冠军版的产品力怎么样?


对很多人来说,10万元是一个购车的分水岭;对纯电动车来说,500kmCLTC续航也是生活半径进一步拓展的分水岭。


两者的交叉点,就是钇为3冠军版看中的空白市场。毕竟除了钇为3之外,超过500km的纯电动车起售价基本都在14万左右。


从这个角度来看,钇为3在纯电小车里的性价比应该是最高的一个了。


而且小车用户需要的设计感、灵活度,以及在冬天节能效果明显的热泵空调和呼声极高的V2L外放电功能它都有,车机也是和科大讯飞华为联合定制的。





8、钇为未来有什么规划?


在这次的采访里,钇为反复提到了一个词,叫做“长期主义”。


这也是最近汽车圈比较流行的一个词,意思是不关注短视的短期利益,而是坚持自己的战略和技术路径,重视长期投入带来的收益。


但怎么个长期法,可能是因为时间紧张,也可能是还捏着大招,钇为这次并没有说


短期的销售部分,钇为接下来的工作重点还是铺渠道,这也是让钇为迅速在线下铺开影响力、从而提升销量的手段。


目前钇为拥有200家用户服务中心,其中包括传统门店、快闪店和商超店等等,到今年年底将达到300家,2025年达到500家。


但要想实现钇为3单车月销破万、5年内年销量突破30万的目标,钇为还有一段路要走。





大家对钇为造车怎么看?欢迎进群和社友们分享你的看法!

公社社群不止可以找到志同道合的车圈社友!还有行业一手资讯、工厂探秘活动、新能源车干货、真实车主分享、不定时开启活动还有机会赢好礼。

悄悄说“滑布李和社长也在群里呦!”

长按社群小姐姐兔头的二维码,回复“大群”即可进群。


点击一下👇不错过更多深度内容



你看好江淮的新能源造车路吗?

电动车公社 重新思考汽车
评论 (0)
  • 12、如何挑选立式磁棒电感厂家
    12、如何挑选立式磁棒电感厂家
  • [完结11章]技术大牛成长课,从0到1带你手写一个数据库系统
    大家好,今天我将给大家分享关于如何开发一个数据库系统的知识,将从0到1手把手带着一步步去开发这个项目,希望我的分享对大家的学习和工作有所帮助,如果有不足的地方还请大家多多指正。

    一、什么是数据库系统
    数据库系统一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员构成 

    二、数据库管理系统的主要功能包括
    数据定义功能:DBMS提供数据定义语言(Data Definition Language,DDL),用户通过它可以方便地对数据库中的对象进行定义
    数据组织、存储和管理:DBMS要分类组织、存储和管理各种数据,包括数据字典、用户数据、数据的存取路径等。
    数据操纵功能:DBMS提-供数据操纵语言(Data Manipulation Language,DML),用户可以使用DML操纵数据,实现对数据库的基本操作,如查询、插入、删除和修改等
    数据库的事务管理和运行管理:数据库在建立、运用和维护时由数据管理系统统一管理、统一控制,以保证数据的安全性、完整性、多用户对数据的并发使用以及发生故障后的系统恢复
    数据库建立和维护功能:数据库初始数据的输入、转换功能,数据库的转储、恢复功能,数据库的重组织功能和性能监视、分析功能等。

    三、数据库系统结构
    1.1模式(概念模式或逻辑模式)
    定义:数据库中全体数据的逻辑结构特征的描述,是所有用户的公用数据库结构。

    特性:

    一个数据库只有一个模式
    模式与应用程序无关,只是数据的一个框架
    1.2子模式(外模式或用户模式)
    定义:数据库用户所见和使用的局部数据的逻辑结构和特征的描述,是用户所用的数据库结构

    特性:

    子模式是模式的子集
    一个数据库有多个子模式,每个用户至少使用一个子模式
    同一个用户可以使用不同的子模式,每个子模式可为不同的用户所用
    1.3内模式(存储模式)
    定义:是数据物理结构和存储方法的描述。它是整个数据库的最低层结构的表示。

    特性:

    一个数据库只有一个内模式,内模式对用户透明
    一个数据库由多种文件组成,如用户数据文件,索引文件及系统文件
    内模式设计直接影响数据库的性能

    以下是开发流程:
    在idea中构建如下几个子模块工程:
    @PostMapping("/doLogin")
    @ApiOperation(value = "一键注册登录接口", notes = "一键注册登录接口", httpMethod = "POST")
    public GraceJSONResult doLogin(HttpServletRequest request,
                                   HttpServletResponse response,
                                   @RequestBody @Valid RegisterLoginBO registerLoginBO,
                                   BindingResult result);
    验证的字段上方可以写一些相关的注解,系统识别后会自动检查
    RegisterLoginBO.java
    public class RegisterLoginBO {

        @NotBlank(message = "手机号不能为空")
        private String mobile;
        @NotBlank(message = "短信验证码不能为空")
        private String smsCode;

        public String getMobile() {
            return mobile;
        }

        public void setMobile(String mobile) {
            this.mobile = mobile;
        }

        public String getSmsCode() {
            return smsCode;
        }

        public void setSmsCode(String smsCode) {
            this.smsCode = smsCode;
        }

        @Override
        public String toString() {
            return "RegisterLoginBO{" +
                    "mobile='" + mobile + '\'' +
                    ", smsCode='" + smsCode + '\'' +
                    '}';
        }
    }

    如果校验有问题,那么可以直接获得并且放回给前端即可。
    BaseController.java
    /**
     * 验证beanBO中的字段错误信息
     * @param result
     * @return
     */
    public Map<String, String> getErrors(BindingResult result) {
        Map<String, String> map = new HashMap<>();
        List<FieldError> errorList = result.getFieldErrors();
        for (FieldError error : errorList) {
            // 发生验证错误所对应的某一个属性
            String errorField = error.getField();
            // 验证错误的信息
            String errorMsg = error.getDefaultMessage();
            map.put(errorField, errorMsg);
        }
        return map;
    }
    一般来说,admin系统不会有主动注册功能,账号都是分配的,那么默认就会存在一个基本账户,这也是预先通过代码生成用户名和密码的。直接手动生成即可:
    <dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
    </dependency>

    同理,查询操作也是类似JPA的操作,再继承Repository后直接使用其内置api即可:
    FriendLinkMngControllerApi.java
    @PostMapping("getFriendLinkList")
    @ApiOperation(value = "查询友情链接列表", notes = "查询友情链接列表", httpMethod = "POST")
    public GraceJSONResult getFriendLinkList();
    首先可以在数据库通过写sql脚本实现查询
    SELECT
    c.id as commentId,
    c.father_id as fatherId,
    c.article_id as articleId,
    c.comment_user_id as commentUserId,
    c.comment_user_nickname as commentUserNickname,
    c.content as content,
    c.create_time as createTime,
    f.comment_user_nickname as quoteUserNickname,
    f.content as quoteContent
    FROM
    comments c
    LEFT JOIN
    comments f
    on
    c.father_id = f.id
    WHERE
    c.article_id = '2006117B57WRZGHH'
    order by
    c.create_time
    desc
    目前我们所搭建的eureka是单机单实例的注册中心,如果挂了,那么整个微服务体系完全不可以,这是不应该的,所以为了实现eureka的高可用,我们可以搭建集群。
    在进行集群构建之前,大家先参照目前的eureka再去构建一个一模一样的工程,可以取名为 springcloud-eureka-cluster。
    为集群中各个eureka节点配置host
    eureka:
      instance:
        hostname: eureka-cluster-${port:7001}    # 集群中每个eureka的名字都要唯一
      # 自定义eureka集群中另外的两个端口号
      other-node-port2: ${p2:7002}
      other-node-port3: ${p3:7003}
      client:
    #    register-with-eureka: false
    #    fetch-registry: false
        service-url:
          # 集群中的每个eureka单实例,都需要相互注册到其他的节点,在此填入集群中其他eureka的地址进行相互注册
          defaultZone: http://eureka-cluster-${eureka.other-node-port2}:${eureka.other-node-port2}/eureka/,http://eureka-cluster-${eureka.other-node-port3}:${eureka.other-node-port3}/eureka/
    我们自己测试的时候时间可以设置为10秒内有10次,我认定非法请求,直接限制这个ip访问15秒,15秒后释放。(像有的网站会出现二维码让你扫描通过,或者手机验证码或者人机交互判断你当前是否是人还是机器,因为有可能是爬虫请求)
    开发步骤:
    首先在yml中设置基本参数:
    @Override
    public Object run() throws ZuulException {
        System.out.println("执行【IP黑名单】Zuul过滤器...");

        // 获得上下文对象requestContext
        RequestContext requestContext = RequestContext.getCurrentContext();
        HttpServletRequest request = requestContext.getRequest();

        // 获得ip
        String ip = IPUtil.getRequestIp(request);

        /**
         * 需求:
         * 判断ip在10秒内请求的次数是否超过10次,
         * 如果超过,则限制访问15秒,15秒过后再放行
         */
        final String ipRedisKey = "zuul-ip:" + ip;
        final String ipRedisLimitKey = "zuul-ip-limit:" + ip;

        // 获得剩余的限制时间
        long limitLeftTime = redis.ttl(ipRedisLimitKey);
        // 如果剩余时间还存在,说明这个ip不能访问,继续等待
        if (limitLeftTime > 0) {
            stopRequest(requestContext);
            return null;
        }

        // 在redis中累加ip的请求访问次数
        long requestCounts = redis.increment(ipRedisKey, 1);

        // 从0开始计算请求次数,初期访问为1,则设置过期时间,也就是连续请求的间隔时间
        if (requestCounts == 1) {
            redis.expire(ipRedisKey, timeInterval);
        }

        // 如果还能取得到请求次数,说明用户连续请求的次数落在10秒内
        // 一旦请求次数超过了连续访问的次数,则需要限制这个ip了
        if (requestCounts > continueCounts) {
            // 限制ip访问一段时间
            redis.set(ipRedisLimitKey, ipRedisLimitKey, limitTimes);

            stopRequest(requestContext);
        }

        return null;
    }

    private void stopRequest(RequestContext requestContext){
        // 停止继续向下路由,禁止请求通信
        requestContext.setSendZuulResponse(false);
        requestContext.setResponseStatusCode(200);
        String result = JsonUtils.objectToJson(
                GraceJSONResult.errorCustom(
                        ResponseStatusEnum.SYSTEM_ERROR_BLACK_IP));
        requestContext.setResponseBody(result);
        requestContext.getResponse().setCharacterEncoding("utf-8");
        requestContext.getResponse().setContentType(MediaType.APPLICATION_JSON_VALUE);
    }
    上面这些都是通过不同key要执行多次才能得到结果,一般来说我们会使用es的aggs功能做聚合统计,会更好。
    通过一个脚本来统计男女数量:
    POST http://192.168.1.203:9200/fans/_doc/_search
    {
        "size": 0,
        "query":{
            "match":{
                "writerId":"201116760SMSZT2W"
            }
        },
        "aggs": {
            "counts": {
                "terms": {
                    "field": "sex"
                }
            }
        }
    }

    以下就是数据库系统开发的整个流程讲解,感谢大家的阅读

  • 特斯拉电路图.rar
    特斯拉电路图,欢迎大家下载
  • 工业级液晶显示控制芯片RA8889ML3N原理图
    TFT-LCD液晶显示控制芯片RA8889ML3N的优势:
    低功耗及功能强大:这款芯片最大支持分辨率为1366x2048,内置128Mb SDRAM,可为内容显示进行快速刷新,同时内置视频解码单元,支持JPEG/AVI硬解码播放,为普通单片机实现视频播放提供可能。
    支持多种接口:RA8889ML3N支持MCU端的8080/6800 8/16-bit 非同步并列接口和3/4线SPI及IIC串列接口,以及最大驱动1366x800分辨率的TFT LCD。
    显示功能强大:RA8889ML3N提供多段的显示记忆体缓冲区段,支持多图层功能,并提供画中画(PIP)、支持透明度控制与显示旋转镜像等显示功能。
    应用范围广:这款芯片广泛应用于自动化控制设备、电力监测控制、测量检测仪器仪表、电教设备、智能家电、医疗检测设备、车用仪表及工控自动化等领域。
  • RadarSensors_ARS404-21_cn数据手册​
    RadarSensors_ARS404-21_cn数据手册
  • 首个基于Transformer的分割检测+视觉大模型视频课程(附源码+课件)
    众所周知,视觉系统对于理解和推理视觉场景的组成特性至关重要。这个领域的挑战在于对象之间的复杂关系、位置、歧义、以及现实环境中的变化等。作为人类,我们可以很轻松地借助各种模态,包括但不仅限于视觉、语言、声音等来理解和感知这个世界。现如今,随着 Transformer 等关键技术的提出,以往看似独立的各个方向也逐渐紧密地联结到一起,组成了“多模态”的概念。

    多功能
    通过引入灵活的提示引擎,包括点、框、涂鸦 (scribbles)、掩模、文本和另一幅图像的相关区域,实现多功能性;
    可组合
    通过学习联合视觉-语义空间,为视觉和文本提示组合实时查询,实现组合性,如图1所示;
    可交互
    通过结合可学习的记忆提示进行交互,实现通过掩模 引导的交叉注意力保留对话历史信息;
    语义感知
    通过使用文本编码器对文本查询和掩模标签进行编码,实现面向开放词汇分割的语义感知。

    超大规模视觉通用感知模型由超大规模图像、文本主干网络以及多任务兼容解码网络组成,它基于海量的图像和文本数据构成的大规模数据集进行预训练,用于处理多个不同的图像、图像-文本任务。此外,借助知识迁移技术能够实现业务侧小模型部署。

    超大规模视觉通用感知模型面临的挑战:
    (1)网络参数量庞大,通常超十亿参数,训练稳定性、收敛性、过拟合等问题相较于小网络挑战大很多。
    (2)原始数据集包含数十亿异质低质量图片与海量文本,多步训练以利用异质的多模态多任务数据,流程复杂,存在灾难性遗忘,难以定位精度等问题。
    (3)实验成本高,通常需要上千块GPU并行训练数周,需要研究者有敏锐的分析能力和扎实的知识基础。
    (4)工程挑战多,海量数据的吞吐,大型GPU集群上的并行算法,超大参数量模型的内存管理。

    提示工程
    大多数视觉数据集由图像和相应文本标签组成,为了利用视觉语言模型处理视觉数据集,一些工作已经利用了基于模版的提示工程,
    text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]  
    text_tokens = clip.tokenize(text_descriptions).cuda()

    除了此类大型视觉语言基础模型外,一些研究工作也致力于开发可以通过视觉输入提示的大型基础模型。例如,最近 META 推出的 SAM 能够执行与类别无关的分割,给定图像和视觉提示(如框、点或蒙版),指定要在图像中分割的内容。这样的模型可以轻松适应特定的下游任务,如医学图像分割、视频对象分割、机器人技术和遥感等

    从模型训练、模型分发、模型商业化,美图体系化地同创作者和开发者共建模型生态:

    (1)模型训练:提供二次训练能力,并持续不断地为创作者提供服务,包括培训、社区和模型创作大赛。

    (2)模型分发:创作者和开发者共建的模型可以在美图的产品内进行分发,在分发过程中持续优化模型。

    (3)模型商业化:行业客户可通过 MiracleVision 的 API 和 SDK 进行商业使用,创作者和开发者通过商业合作获得经济收益。
    通用视觉-语言学习的基础模型
    UNITER:结合了生成(例如掩码语言建模和掩码区域建模)和对比(例如图像文本匹配和单词区域对齐)目标的方法,适用于异构的视觉-语言任务。
    Pixel2Seqv2:将四个核心视觉任务统一为像素到序列的接口,使用编码器-解码器架构进行训练。
    Vision-Language:使用像 BART 或 T5 等预训练的编码器-解码器语言模型来学习不同的计算机视觉任务。
    模型整体结构上,抛弃了CNN,将 BERT 原版的 Transformer 开箱即用地迁移到分类任务上面,在使用大规模训练集的进行训练时,取得了极好的效果。
    同时,在大规模数据集上预训练好的模型,在迁移到中等数据集或小数据集的分类任务上以后,也能取得比CNN更优的性能。
    模型整体结构如下图所示,完全使用原始 BERT 的 Transformer 结构,主要是对图片转换成类似 token 的处理,原文引入了一个 patch 的概念,首先把图像划分为一个个的 patch,然后将 patch 映射成一个 embedding,即图中的 linear projection 层,将输入转换为类似 BERT 的输入结构,然后加上 position embedding,这里的 position 是1D的,最后加上一个learnable classification token 放在序列的前面,classification由 MLP 完成。

    这里我们用 RAM 提取了图像的语义标签,再通过将标签输入到 Grounding-DINO 中进行开放世界检测,最后再通过将检测作为 SAM 的提示分割一切。目前视觉基础大模型可以粗略的归为三类:
    textually prompted models, e.g., contrastive, generative, hybrid, and conversational;
    visually prompted models, e.g., SAM, SegGPT;
    heterogeneous modalities-based models, e.g., ImageBind, Valley.

    CoCa 通过将所有标签简单地视为文本,对 web-scale alt-text 和 annotated images 进行了从头开始端到端的预训练,无缝地统一了表示学习的自然 语言 监督。因此,CoCa 在广泛的下游任务上实现了最先进的性能,零样本传输或最小的任务特定适应, 跨越视觉识别(ImageNet,Kinetics-400/600/700,Moments-in-Time )、跨模式检索(MSCOCO、Flickr30K、MSR-VTT)、 多模式理解(VQA、SNLI-VE、NLVR2)和图像字幕(MSCOCO、NoCaps)。在 ImageNet 分类中,CoCa 获得了 86.3% 的 zero-shot top-1 准确率, frozen encoder and finetune classifier 是 90.6%,finetune encoder 可以到 91.0%。

    截止目前国内外已经发布了许多包括 NLP, CV 和 多模态在内的大规模模型,但是这些模型在应用落地上还是有待进一步探究的,目前应用落地较好的有华为 的盘古,在电网和金融圈都有应用;智源的悟道系列在诗词图文上都有广泛应用,可以帮助学生看图写作,根据文字生成插图等;百度的文心也发布了在金融方 面的应用。但截止目前为止大模型在实际中的应用还不是很理想,大模型发展的初衷是使用一个预训练好的大模型代替一堆小作坊似的根据不同任务训练的小模 型,通过模型蒸馏知识迁移等技术在小模型上使用少量数据集达到超过原来小模型性能的目标。CV 大模型在应用上的一个难点是与实际应用相结合,目前社会中 用的较多的视觉相关的深度学习模型主要包括物体检测,人脸识别以及缺陷检测(部分)相比 NLP 模型在实际中的使用少很多,因此将 CV 模型与实际生产相 结合发现更多的应用场景很关键。另外一个 CV 大模型应用的难点就是如何快速高效的使用蒸馏和知识迁移技术提升下游任务的性能,这两点难题的解决在 CV 大模型的实际应用中都刻不容缓。

    总结起来,将大模型应用于更高分辨率的下游视觉任务具有以下好处:提高感知能力、改善定位精度、提升语义理解、改善细节保留和边缘清晰度、增加鲁棒性和泛化能力,以及推动研究进展。这些好处使得大模型在处理高分辨率图像时能够获得更准确、更细致和更真实的结果。随着深度学习和计算资源的不断发展,我们可以期待更先进的大模型和相关技术的出现,进一步推动计算机视觉在高分辨率图像任务中的应用和突破

  • 风力发电机组机结构与原理-2018年-赵万清
    风力发电机组机结构与原理,中国电力出版社,PDF版本。
  • 13、如何解决直插差模电感的异响问题
    13、如何解决直插差模电感的异响问题
  • RadarSensors_ARS408-21_cn数据手册
    RadarSensors_ARS408-21_cn数据手册
  • 注释EN55014-1
    注释EN55014-1
  • 安科瑞 ASCB1系列智能微型断路器样本
    ASCB1 系列智能微型断路器是安科瑞电气股份有限公司全新推出的智慧用电产品,产品由智能微型断路器与智能网关两部分组成,可用于对用电线路的关键电气因素,如电压、电流、功率、温度、漏电、能耗等进行实时监测,具有远程操控、预警保护、短路保护、电能计量统计、故障定位等功能,应用于户内建筑物及类似场所的工业、商业、民用建筑及基础设施等领域低压终端配电网络。
  • 首个基于Transformer的分割检测+视觉大模型视频课程(23年新课+源码+课件)
    自动驾驶是高安全型应用,需要高性能和高可靠的深度学习模型,Vision Transformer是理想的选摔。现在主流的自动驾驶感知算法基本都使用了Vision Transformer相关技术,比如分割、2D/3D检测,以及最近大火的大模型 (如SAM),Vision Transformer在自动驾驶领域的落地方面遍地开花。5一方面,在自动驾驶或图像处理相关算法岗位的面试题中,Vision Transformer是必考题,需要对其理论知识有深入理解,并且在项目中真实的使用过相关技术。

    Transformer出自于Google于2017年发表的论文《Attention is all you need》,最开始是用于机器翻译,并且取得了非常好的效果。但是自提出以来,Transformer不仅仅在NLP领域大放异彩,并且在CV、RS等领域也取得了非常不错的表现。尤其是2020年,绝对称得上是Transformer的元年,比如在CV领域,基于Transformer的模型横扫各大榜单,完爆基于CNN的模型。为什么Transformer模型表现如此优异?它的原理是什么?它成功的关键又包含哪些?本文将简要地回答一下这些问题。

    我们知道Transformer模型最初是用于机器翻译的,机器翻译应用的输入是某种语言的一个句子,输出是另外一种语言的句子。
    var i *int = nil
    fmt.Println("i.size:", unsafe.Sizeof(i)) //8

    var i8 *int8 = nil
    fmt.Println("i8.size:", unsafe.Sizeof(i8)) //8

    var s *string = nil
    fmt.Println("s.size:", unsafe.Sizeof(s)) //8

    var ps *struct{} = nil
    fmt.Println("ps.size:", unsafe.Sizeof(ps)) //8

    var si []int = nil
    var si1 []int = nil
    fmt.Println("si.size:", unsafe.Sizeof(si)) //24

    var ii interface{} = nil
    fmt.Println("ii.size:", unsafe.Sizeof(ii)) //16
    我们以生成我,爱,机器,学习,翻译成<bos>,i,love,machine,learning,<eos>这个例子做生成过程来解释。
    训练:

    把“我/爱/机器/学习”embedding后输入到encoder里去,最后一层的encoder最终输出的outputs [10, 512](假设我们采用的embedding长度为512,而且batch size = 1),此outputs 乘以新的参数矩阵,可以作为decoder里每一层用到的K和V;
    将<bos>作为decoder的初始输入,将decoder的最大概率输出词向量A1和‘i’做cross entropy(交叉熵)计算error。
    将<bos>,“i” 作为decoder的输入,将decoder的最大概率输出词 A2 和‘love’做cross entropy计算error。
    将<bos>,“i”,“love” 作为decoder的输入,将decoder的最大概率输出词A3和’machine’ 做cross entropy计算error。
    将<bos>,“i”,"love ",“machine” 作为decoder的输入,将decoder最大概率输出词A4和‘learning’做cross entropy计算error。
    将<bos>,“i”,"love ",“machine”,“learning” 作为decoder的输入,将decoder最大概率输出词A5和终止符做cross entropy计算error。
    那么并行的时候是怎么做的呢,我们会有一个mask矩阵在这叫seq mask,因为他起到的作用是在decoder编码我们的target seq的时候对每一个词的生成遮盖它之后的词的信息。
    func main() {
    s := []string{"a", "b", "c"}
    fmt.Println("s:origin", s)
    changes1(s)
    fmt.Println("s:f1", s)

    changes2(s)
    fmt.Println("s:f2", s)

    changes3(s)
    fmt.Println("s:f3", s)
    }

    func changes1(s []string) {
    var tmp = []string{"x", "y", "z"}
    s = tmp
    }

    func changes2(s []string) {
    // item只是一个副本,不能改变s中元素的值
    for i, item := range s {
    item = "d"
    fmt.Printf("item=%s;s[%d]=%s", item, i, s[i])
    }
    }

    func changes3(s []string) {
    for i := range s {
    s[i] = "d"
    }
    }

    首先我们需要为每个输入向量(也就是词向量)创建3个向量,分别叫做Query、Key、Value。那么如何创建呢?我们可以对输入词向量分别乘上3个矩阵来得到Q、K、V向量,这3个矩阵的参数在训练的过程是可以训练的。注意Q、K、V向量的维度是一样的,但是它们的维度可以比输入词向量小一点,比如设置成64,其实这步也不是必要的,这样设置主要是为了与后面的Mulit-head注意力机制保持一致(当使用8头注意力时,单头所处理的词向量维度为512/8=64,此时Q、K、V向量与输入词向量就一致了)。我们假设输入序列为英文的"Thinking Machines"
    想要深度理解Attention机制,就需要了解一下它产生的背景、在哪类问题下产生,以及最初是为了解决什么问题而产生。

    首先回顾一下机器翻译领域的模型演进历史:

    机器翻译是从RNN开始跨入神经网络机器翻译时代的,几个比较重要的阶段分别是: Simple RNN, Contextualize RNN,Contextualized RNN with attention, Transformer(2017),下面来一一介绍。

    「Simple RNN」 :这个encoder-decoder模型结构中,encoder将整个源端序列(不论长度)压缩成一个向量(encoder output),源端信息和decoder之间唯一的联系只是: encoder output会作为decoder的initial states的输入。这样带来一个显而易见的问题就是,随着decoder长度的增加,encoder output的信息会衰减。
    func main(){
    var c = make(chan int)
    fmt.Printf("c.pointer=%p\n", c) //c.pointer=0xc000022180
    go func() {
    c <- 1
    addChannel(c)
    close(c)
    }()

    for item := range c {
    //item: 1
    //item: 2
    fmt.Println("item:", item)
    }
    }

    func addChannel(done chan int) {
    done <- 2
    fmt.Printf("done.pointer=%p\n", done) //done.pointer=0xc000022180
    }
    在测试模型的时候,Test:decoder没有label,采用自回归一个词一个词的输出,要翻译的中文正常从encoder并行输入(和训练的时候一样)得到每个单词的embedding,然后decoder第一次先输入bos再此表中的id,得到翻译的第一个单词,然后自回归,如此循环直到预测达到eos停止标记
    type visit struct {
    a1  unsafe.Pointer
    a2  unsafe.Pointer
    typ Type
    }

    func deepValueEqual(v1, v2 Value, visited map[visit]bool) bool {
    if !v1.IsValid() || !v2.IsValid() {
    return v1.IsValid() == v2.IsValid()
    }
    if v1.Type() != v2.Type() {
    return false
    }

    // We want to avoid putting more in the visited map than we need to.
    // For any possible reference cycle that might be encountered,
    // hard(v1, v2) needs to return true for at least one of the types in the cycle,
    // and it's safe and valid to get Value's internal pointer.
    hard := func(v1, v2 Value) bool {
    switch v1.Kind() {
    case Pointer:
    if v1.typ.ptrdata == 0 {
    // not-in-heap pointers can't be cyclic.
    // At least, all of our current uses of runtime/internal/sys.NotInHeap
    // have that property. The runtime ones aren't cyclic (and we don't use
    // DeepEqual on them anyway), and the cgo-generated ones are
    // all empty structs.
    return false
    }
    fallthrough
    case Map, Slice, Interface:
    // Nil pointers cannot be cyclic. Avoid putting them in the visited map.
    return !v1.IsNil() && !v2.IsNil()
    }
    return false
    }

    if hard(v1, v2) {
    // For a Pointer or Map value, we need to check flagIndir,
    // which we do by calling the pointer method.
    // For Slice or Interface, flagIndir is always set,
    // and using v.ptr suffices.
    ptrval := func(v Value) unsafe.Pointer {
    switch v.Kind() {
    case Pointer, Map:
    return v.pointer()
    default:
    return v.ptr
    }
    }
    addr1 := ptrval(v1)
    addr2 := ptrval(v2)
    if uintptr(addr1) > uintptr(addr2) {
    // Canonicalize order to reduce number of entries in visited.
    // Assumes non-moving garbage collector.
    addr1, addr2 = addr2, addr1
    }

    // Short circuit if references are already seen.
    typ := v1.Type()
    v := visit{addr1, addr2, typ}
    if visited[v] {
    return true
    }

    // Remember for later.
    visited[v] = true
    }

    switch v1.Kind() {
    case Array:
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Slice:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    // Special case for []byte, which is common.
    if v1.Type().Elem().Kind() == Uint8 {
    return bytealg.Equal(v1.Bytes(), v2.Bytes())
    }
    for i := 0; i < v1.Len(); i++ {
    if !deepValueEqual(v1.Index(i), v2.Index(i), visited) {
    return false
    }
    }
    return true
    case Interface:
    if v1.IsNil() || v2.IsNil() {
    return v1.IsNil() == v2.IsNil()
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Pointer:
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    return deepValueEqual(v1.Elem(), v2.Elem(), visited)
    case Struct:
    for i, n := 0, v1.NumField(); i < n; i++ {
    if !deepValueEqual(v1.Field(i), v2.Field(i), visited) {
    return false
    }
    }
    return true
    case Map:
    if v1.IsNil() != v2.IsNil() {
    return false
    }
    if v1.Len() != v2.Len() {
    return false
    }
    if v1.UnsafePointer() == v2.UnsafePointer() {
    return true
    }
    for _, k := range v1.MapKeys() {
    val1 := v1.MapIndex(k)
    val2 := v2.MapIndex(k)
    if !val1.IsValid() || !val2.IsValid() || !deepValueEqual(val1, val2, visited) {
    return false
    }
    }
    return true
    case Func:
    if v1.IsNil() && v2.IsNil() {
    return true
    }
    // Can't do better than this:
    return false
    case Int, Int8, Int16, Int32, Int64:
    return v1.Int() == v2.Int()
    case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
    return v1.Uint() == v2.Uint()
    case String:
    return v1.String() == v2.String()
    case Bool:
    return v1.Bool() == v2.Bool()
    case Float32, Float64:
    return v1.Float() == v2.Float()
    case Complex64, Complex128:
    return v1.Complex() == v2.Complex()
    default:
    // Normal equality suffices
    return valueInterface(v1, false) == valueInterface(v2, false)
    }
    }
    这便是encoder的整体计算流程图了,Transformer模型中堆叠了多个这样的encoder,无非就是输出连接输入罢了,常规操作。
    最后再附上一个Transformer的代码实现,读者有兴趣可以跟着自己复现一下Transformer模型的代码。
       package main

       import (
           "log"
           "sync"
       )

       func init() {
           log.SetFlags(log.Lshortfile)
       }
       func main() {
           lock := sync.Mutex{}

           //Go 1.18 新增,是一种非阻塞模式的取锁操作。当调用 TryLock() 时,
           //该函数仅简单地返回 true 或者 false,代表是否加锁成功
           //在某些情况下,如果我们希望在获取锁失败时,并不想停止执行,
           //而是可以进入其他的逻辑就可以使用TryLock()
           log.Println("TryLock:", lock.TryLock())
           //已经通过TryLock()加锁,不能再次加锁
           lock.Lock()

       }

  • #这段代码是一个基于C语言的嵌入式程序,用于在HPMicro平台上运行。它的主要功能是初始化一个LED灯,并使其以一定的时间间隔闪烁。#以下是对代码的解析:#```c#include #include "board.h"#include "hpm_debug_console.h"#define LED_FLASH_PERIOD_IN_MS 300int main(void){    int u;    board_init(); // 初始化板子 
    丙丁先生 2023-12-06 14:22 108浏览
  • 近日,在传感器专家网的压力传感器专业交流群组中,有相关专家交流了目前我国压力传感器的一些情况。交流中指出,目前国内已有一些企业在做MEMS压力传感器芯片,在该领域国内相关企业总体来说技术差不多,精度等关键技术指标彼此间相差不大,但与国外压力传感器芯片巨头相比,精度等指标却有较大差距。传感器专家网https://www.sensorexpert.com.cn专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器
    传感器专家网 2023-12-06 11:03 52浏览
  • 近日,英国伦敦的可持续倡议(SMI)公布了2023年《地球宪章》徽章获奖名单。在这个名单中,全球共17家企业入选,中国企业仅占两席。最值得注目的是,海尔智家作为唯一获奖的中国家电企业,荣登榜单。 据了解,《地球宪章》徽章由现任英国国王查尔斯三世于2021年发起,旨在表彰对全球环境的可持续发展做出突出贡献的企业,鼓励企业将自然、人类和地球置于核心位置,通过创新和可持续的商业模式,共同应对全球气候挑战。获奖企业由来自环境、商业、政治和慈善界的全球专家小组经过严苛的评选选出。 海尔
    锦缎研究院 2023-12-06 12:41 53浏览
  • 文章目录前言1 SD NAND概述2 代码说明3 记录Log前言本文基于 ESP32 芯片作为主控制器,测试 SD NAND 记录飞控 Log 功能。关于 MCU 的存储方面,以前基本上用内置的 E2PROM,或者是外置的 NOR Flash 就可以。随着物联网的兴起,MCU 的应用越来越广泛,逐渐的 MCU 会涉及到大容量的存储需求,用来存储音频,图片(GUI)、视频缓存、协议栈等等。传统的 E2PROM 和 NOR Flash 就不够用了。这个时候 MCU 可能就需要用到 NAND Flas
    雷龙发展 2023-12-06 18:18 11浏览
  •     今天看到一个麦肯锡的统计数据,2021年中国出口的电子产品占世界34%。越来越多的PCB组件在中国造出来,然后送往全世界。作为电子工程师,除了增加修养,不断实现良好的设计,也要减少电子垃圾,对国际上的主要环保要求有所了解。    ROHS  Restriction of Hazardous Substances  有毒物质限制        这个标准针对 6 类电子产品中常见的的有毒物质,
    电子知识打边炉 2023-12-06 22:21 115浏览
  • 摘要:根据CINNO Research产业统计数据,Q3'23国内智能手机屏下指纹识别占比创历史新高达45%,而侧边指纹识别占比较去年同期下降12%,后置指纹识别占比下降至1%,而前置指纹已淡出国内智能手机指纹识别市场。根据CINNO Research产业统计数据,受华为、荣耀热门机型销售的影响,Q3'23国内智能手机指纹识别搭载率上升至84%。图示:中国市场智能手机指纹识别技术别占比趋势来源: CINNO Research月度中国市场智能手机指纹识别应用趋势报告2023年第三季度,国内OLED
    CINNOResearch 2023-12-06 12:53 94浏览
  • Delta-Sigma 模数转换器(Delta-Sigma)可为精密测量应用提供低功耗、低噪声前端。它可用于多种应用,具体取决于分辨率、采样速率和操作模式。它能够对 16 位音频进行高速低分辨率通信处理,并且能够对应变计、热电偶和其他高精度传感器进行高精度的 20 位低速转换。处理音频信息时, Delta-Sigma采用连续操作模式。当用于扫描多个传感器时, Delta-Sigma采用其中一个多样本采样模式。用于单点高分辨率测量时,Delta-Sigma采用单一样本采样模式。Delta-sigm
    blackguest 2023-12-07 00:34 16浏览
  • 导语:CINNO Research统计数据表明,Q3'23全球半导体设备厂商市场规模前十大公司合计超250亿美元,同比下降9%,环比增长3%。CINNO Research统计数据表明,Q3'23全球半导体设备厂商市场规模Top10营收合计超250亿美元,同比下降9%,环比增长3%。Q3'23全球半导体设备厂商市场规模排名Top10与1H'23的Top10设备商相比,日立高新(Hitachi High-Tech)排名跌出Top10,泰瑞达(Teradyne)排名回归第十。荷兰公司阿斯麦(ASML)
    CINNOResearch 2023-12-06 14:04 110浏览
  • 背景   随着汽车行业的不断迭代发展,市场及消费者对汽车提出了更高的要求,智能网联、自动驾驶等新技术的应用推动整车厂对车载芯片、汽车软件等方面投入了更多的精力,SOA(面向服务的架构)逐渐成为大多整车厂顺应市场趋势和技术趋势的首选。SOA架构使服务间的通讯变得更加简单,ECU更新、软件升级等变得更加灵活,使系统的健壮性和拓展性获得了大幅提高。但是在SOA架构开发阶段,由于市面上的IDL(接口描述语言)众多,例如FIDL、Protobuf、vCDL、ARXML、OMG IDL、CAN
    北汇信息 2023-12-06 11:41 76浏览
  • 12月5日中国台湾地区“国科委”发布了一份包含22项核心关键技术的清单,这些技术具有“主导优势与保护急迫性”,列入清单的技术在出口方面将面临审查。传感器专家网https://www.sensorexpert.com.cn专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器产品与技术,对广大电子制造从业者与传感器制造者提供精准的匹配与对接。技术清单中,包含多项传感器技术,以及14纳米以下制程芯片制造技术等半导
    传感器专家网 2023-12-06 19:57 10浏览
  • ​无论当下看不看机会,把握行情肯定是没错。 通过岗位数量,岗位要求(如对学历,技术点的要求)来了解行情是有效途径之一。 可以找我了解更多全国岗位。 【嵌入式软件工程师】 上海,风电行业国资企业,对学历有要求。 岗位职责: 1. 负责产品全周期研发,包括市场调研、客户需求技术转化、产品设计、产品制造、产品安装调试、产品测试验证和产品认证; 2. 负责产品失效根因分析,提供有效解决方案; 3. 负责组织供应商选择和产品质量管控; 4. 组织编制产品开发技
    落子无悔 2023-12-06 13:27 63浏览
  • 来源:虹科汽车电子 虹科技术丨BabyLIN产品如何轻松搞定K线协议实现? 原文链接:https://mp.weixin.qq.com/s/LR7VHFQajjyw6s6bVDJmsg 欢迎关注虹科,为您提供最新资讯!   导读 为了实现K线通信,SDF-V3在协议部分中定义了新的协议类型KLine Raw。所有能够运行SDF-V3文件(LinWorks版本在V.2.29.4以上)并使用最新固件(固件版本在V.6.18以上)的BabyLIN设备都可以执行KLine Raw
    虹科电子科技 2023-12-06 14:42 116浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦