SPI详解

汽车ECU开发 2023-11-29 08:55

1 SPI简介

SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。

2 SPI特点

2.1 采用主-从模式(Master-Slave) 的控制方式

SPI 规定了两个 SPI 设备之间通信必须由主设备 (Master) 来控制次设备 (Slave). 一个 Master 设备可以通过提供 Clock 以及对 Slave 设备进行片选 (Slave Select) 来控制多个 Slave 设备, SPI 协议还规定 Slave 设备的 Clock 由 Master 设备通过 SCK 管脚提供给 Slave 设备, Slave 设备本身不能产生或控制 Clock, 没有 Clock 则 Slave 设备不能正常工作。

2.2 采用同步方式(Synchronous)传输数据

Master 设备会根据将要交换的数据来产生相应的时钟脉冲(Clock Pulse), 时钟脉冲组成了时钟信号(Clock Signal) , 时钟信号通过时钟极性 (CPOL) 和 时钟相位 (CPHA) 控制着两个 SPI 设备间何时数据交换以及何时对接收到的数据进行采样, 来保证数据在两个设备之间是同步传输的。

2.3 数据交换(Data Exchanges)

SPI 设备间的数据传输之所以又被称为数据交换, 是因为 SPI 协议规定一个 SPI 设备不能在数据通信过程中仅仅只充当一个 "发送者(Transmitter)" 或者 "接收者(Receiver)". 在每个 Clock 周期内, SPI 设备都会发送并接收一个 bit 大小的数据, 相当于该设备有一个 bit 大小的数据被交换了. 一个 Slave 设备要想能够接收到 Master 发过来的控制信号, 必须在此之前能够被 Master 设备进行访问 (Access). 所以, Master 设备必须首先通过 SS/CS pin 对 Slave 设备进行片选, 把想要访问的 Slave 设备选上. 在数据传输的过程中, 每次接收到的数据必须在下一次数据传输之前被采样. 如果之前接收到的数据没有被读取, 那么这些已经接收完成的数据将有可能会被丢弃, 导致 SPI 物理模块最终失效. 因此, 在程序中一般都会在 SPI 传输完数据后, 去读取 SPI 设备里的数据, 即使这些数据(Dummy Data)在我们的程序里是无用的。

2.4 SPI有四种传输模式

上升沿、下降沿、前沿、后沿触发。当然也有MSB和LSB传输方式。

2.5 SPI只有主模式和从模式之分

没有读和写的说法,因为实质上每次SPI是主从设备在交换数据。也就是说,你发一个数据必然会收到一个数据;你要收一个数据必须也要先发一个数据。

3 工作机制

3.1 概述

上图只是对 SPI 设备间通信的一个简单的描述, 下面就来解释一下图中所示的几个组件(Module):
SSPBUF,Synchronous Serial Port Buffer, 泛指 SPI 设备里面的内部缓冲区, 一般在物理上是以 FIFO 的形式, 保存传输过程中的临时数据;
SSPSR, Synchronous Serial Port Register, 泛指 SPI 设备里面的移位寄存器(Shift Regitser), 它的作用是根据设置好的数据位宽(bit-width) 把数据移入或者移出 SSPBUF;
Controller, 泛指 SPI 设备里面的控制寄存器, 可以通过配置它们来设置 SPI 总线的传输模式。

通常情况下, 我们只需要对上图所描述的四个管脚(pin) 进行编程即可控制整个 SPI 设备之间的数据通信:
SCK, Serial Clock, 主要的作用是 Master 设备往 Slave 设备传输时钟信号, 控制数据交换的时机以及速率;
SS/CS, Slave Select/Chip Select, 用于 Master 设备片选 Slave 设备, 使被选中的 Slave 设备能够被 Master 设备所访问;
SDO/MOSI, Serial Data Output/Master Out Slave In, 在 Master 上面也被称为 Tx-Channel, 作为数据的出口, 主要用于 SPI 设备发送数据;
SDI/MISO, Serial Data Input/Master In Slave Out, 在 Master 上面也被称为 Rx-Channel, 作为数据的入口, 主要用于SPI 设备接收数据;
SPI 设备在进行通信的过程中, Master 设备和 Slave 设备之间会产生一个数据链路回环(Data Loop), 就像上图所画的那样, 通过 SDO 和 SDI 管脚, SSPSR 控制数据移入移出 SSPBUF, Controller 确定 SPI 总线的通信模式, SCK 传输时钟信号。

3.2 Timing

上图通过 Master 设备与 Slave 设备之间交换1 Byte 数据来说明 SPI 协议的工作机制。
首先, 在这里解释一下相位和极性的概念

3.2.1 SPI相关的缩写或说法

SPI的极性Polarity和相位Phase,最常见的写法是CPOL和CPHA,不过也有一些其他写法,简单总结如下:
(1) CKPOL (Clock Polarity) = CPOL = POL = Polarity = (时钟)极性
(2) CKPHA (Clock Phase) = CPHA = PHA = Phase = (时钟)相位
(3) SCK=SCLK=SPI的时钟
(4) Edge=边沿,即时钟电平变化的时刻,即上升沿(rising edge)或者下降沿(falling edge)
对于一个时钟周期内,有两个edge,分别称为:
Leading edge=前一个边沿=第一个边沿,对于开始电压是1,那么就是1变成0的时候,对于开始电压是0,那么就是0变成1的时候;
Trailing edge=后一个边沿=第二个边沿,对于开始电压是1,那么就是0变成1的时候(即在第一次1变成0之后,才可能有后面的0变成1),对于开始电压是0,那么就是1变成0的时候;

3.2.2 SPI的相位和极性

CPOL和CPHA,分别都可以是0或时1,对应的四种组合就是:
Mode 0 CPOL=0, CPHA=0
Mode 1 CPOL=0, CPHA=1
Mode 2 CPOL=1, CPHA=0
Mode 3 CPOL=1, CPHA=1

3.2.3 CPOL极性

先说什么是SCLK时钟的空闲时刻,其就是当SCLK在数发送8个bit比特数据之前和之后的状态,于此对应的,SCLK在发送数据的时候,就是正常的工作的时候,有效active的时刻了。
先说英文,其精简解释为:Clock Polarity = IDLE state of SCK。
再用中文详解:
SPI的CPOL,表示当SCLK空闲idle的时候,其电平的值是低电平0还是高电平1:
CPOL=0,时钟空闲idle时候的电平是低电平,所以当SCLK有效的时候,就是高电平,就是所谓的active-high;
CPOL=1,时钟空闲idle时候的电平是高电平,所以当SCLK有效的时候,就是低电平,就是所谓的active-low;

3.2.4 CPHA相位

首先说明一点,capture strobe = latch = read = sample,都是表示数据采样,数据有效的时刻。相位,对应着数据采样是在第几个边沿(edge),是第一个边沿还是第二个边沿,0对应着第一个边沿,1对应着第二个边沿。
对于:
CPHA=0,表示第一个边沿:
对于CPOL=0,idle时候的是低电平,第一个边沿就是从低变到高,所以是上升沿;
对于CPOL=1,idle时候的是高电平,第一个边沿就是从高变到低,所以是下降沿;
CPHA=1,表示第二个边沿:
对于CPOL=0,idle时候的是低电平,第二个边沿就是从高变到低,所以是下降沿;
对于CPOL=1,idle时候的是高电平,第一个边沿就是从低变到高,所以是上升沿;

还是上图大家更容易看懂


3.2.5 软件中如何设置SPI的极性和相位

SPI分主设备和从设备,两者通过SPI协议通讯。
而设置SPI的模式,是从设备的模式,决定了主设备的模式。
所以要先去搞懂从设备的SPI是何种模式,然后再将主设备的SPI的模式,设置和从设备相同的模式,即可正常通讯。
对于从设备的SPI是什么模式,有两种:

3.2.5.1 固定的,有SPI从设备硬件决定的

SPI从设备,具体是什么模式,相关的datasheet中会有描述,需要自己去datasheet中找到相关的描述,即:

关于SPI从设备,在空闲的时候,是高电平还是低电平,即决定了CPOL是0还是1;
然后再找到关于设备是在上升沿还是下降沿去采样数据,这样就是,在定了CPOL的值的前提下,对应着可以推算出CPHA是0还是1了。

3.2.5.2 可配置的,由软件自己设定

从设备也是一个SPI控制器,4种模式都支持,此时只要自己设置为某种模式即可。
然后知道了从设备的模式后,再去将SPI主设备的模式,设置为和从设备模式一样,即可。
对于如何配置SPI的CPOL和CPHA的话,不多细说,多数都是直接去写对应的SPI控制器中对应寄存器中的CPOL和CPHA那两位,写0或写1即可。
3.3 SSPSR
SSPSR 是 SPI 设备内部的移位寄存器(Shift Register). 它的主要作用是根据 SPI 时钟信号状态, 往 SSPBUF 里移入或者移出数据, 每次移动的数据大小由 Bus-Width 以及 Channel-Width 所决定。
Bus-Width 的作用是指定地址总线到 Master 设备之间数据传输的单位。
例如, 我们想要往 Master 设备里面的 SSPBUF 写入 16 Byte 大小的数据: 首先, 给 Master 设备的配置寄存器设置 Bus-Width 为 Byte; 然后往 Master 设备的 Tx-Data 移位寄存器在地址总线的入口写入数据, 每次写入 1 Byte 大小的数据(使用 writeb 函数); 写完 1 Byte 数据之后, Master 设备里面的 Tx-Data 移位寄存器会自动把从地址总线传来的1 Byte 数据移入 SSPBUF 里; 上述动作一共需要重复执行 16 次.
Channel-Width 的作用是指定 Master 设备与 Slave 设备之间数据传输的单位. 与 Bus-Width 相似, Master 设备内部的移位寄存器会依据 Channel-Width 自动地把数据从 Master-SSPBUF 里通过 Master-SDO 管脚搬运到 Slave 设备里的 Slave-SDI 引脚, Slave-SSPSR 再把每次接收的数据移入 Slave-SSPBUF里.通常情况下, Bus-Width 总是会大于或等于 Channel-Width, 这样能保证不会出现因 Master 与 Slave 之间数据交换的频率比地址总线与 Master 之间的数据交换频率要快, 导致 SSPBUF 里面存放的数据为无效数据这样的情况。

3.4 SSPBUF

我们知道, 在每个时钟周期内, Master 与 Slave 之间交换的数据其实都是 SPI 内部移位寄存器从 SSPBUF 里面拷贝的. 我们可以通过往 SSPBUF 对应的寄存器 (Tx-Data / Rx-Data register) 里读写数据, 间接地操控 SPI 设备内部的 SSPBUF.
例如, 在发送数据之前, 我们应该先往 Master 的 Tx-Data 寄存器写入将要发送出去的数据, 这些数据会被 Master-SSPSR 移位寄存器根据 Bus-Width 自动移入 Master-SSPBUF 里, 然后这些数据又会被 Master-SSPSR 根据 Channel-Width 从 Master-SSPBUF 中移出, 通过 Master-SDO 管脚传给 Slave-SDI 管脚, Slave-SSPSR 则把从 Slave-SDI 接收到的数据移入 Slave-SSPBUF 里. 与此同时, Slave-SSPBUF 里面的数据根据每次接收数据的大小(Channel-Width), 通过 Slave-SDO 发往 Master-SDI, Master-SSPSR 再把从 Master-SDI 接收的数据移入 Master-SSPBUF.在单次数据传输完成之后, 用户程序可以通过从 Master 设备的 Rx-Data 寄存器读取 Master 设备数据交换得到的数据。

3.5 Controller

Master 设备里面的 Controller 主要通过时钟信号(Clock Signal)以及片选信号(Slave Select Signal)来控制 Slave 设备. Slave 设备会一直等待, 直到接收到 Master 设备发过来的片选信号, 然后根据时钟信号来工作。
Master 设备的片选操作必须由程序所实现. 例如: 由程序把 SS/CS 管脚的时钟信号拉低电平, 完成 SPI 设备数据通信的前期工作; 当程序想让 SPI 设备结束数据通信时, 再把 SS/CS 管脚上的时钟信号拉高电平。

4 SPI举例

上面说了那么多,在这里我来举一个例子帮助大家理解。
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。
那么第一个上升沿来的时候 数据将会是sdo=1;寄存器=0101010x。下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在 8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。
举例:
假设主机和从机初始化就绪:并且主机的sbuff=0xaa,从机的sbuff=0x55,下面将分步对spi的8个时钟周期的数据情况演示一遍:假设上升沿发送数据。
这样就完成了两个寄存器8位的交换,上面的上表示上升沿、下表示下降沿,sdi、sdo相对于主机而言的。已经很接近理解了,下一步就是把 上面的过程转为动画。


来源:CSDN、硬件十万个为什么 | 首图图源:网络

-end-


分享不易,恳请点个【👍】和【在看】

汽车ECU开发 专注于汽车电子ECU软件开发,技术分享。
评论 (0)
  • 电子产品质量的无故障工作时间(MTBF,即Mean Time Between Failures)指标,听起来很专业,其实它就像是我们日常生活中的“持久力”或者“耐力”概念。想象一下,你买了一款新手机,希望它能陪伴你至少几年时间,而不是频繁出现故障。这款手机的MTBF就是指,在平均情况下,你使用这款手机多久后,它才会出现第一次故障。MTBF不仅是一个技术指标,更是对电子产品制造商质量控制的考验。一个高的MTBF值意味着制造商在材料选择、工艺设计以及质量控制方面都做得很好,这样的产品自然更受消费者欢
    丙丁先生 2024-02-21 08:00 80浏览
  • 一、实验目的熟悉定时器的基本结构,学习定时器的功能和控制方法,并实现基于定时器中断方式控制程序。二、实验原理定时器TMS320CC6748有4个定时器/计数器,均可配置为64位计数器、两个独立32位计数器及自动重装32位计数器,可以产生周期中断DMA事件及外部事件。定时器/计数器还可以用于捕获外部输入信号边缘并计数。此外,定时器1还可以用作64位看门狗计数器。本实验使用的是定时器2。定时器的功能(1)定时时钟源一般来源于DSP内部,当然也可以选择来自于外部。(2)计数可以利用它的功能来计算外部脉
    创龙教仪 2024-02-21 14:09 36浏览
  • 热斑效应:太阳能电池一般是由多块电池组件串联或并联起来。串联支路中可能由于电池片内部缺陷或者外部遮挡,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。被遮蔽的太阳电池组件此时会严重发热而受损。编辑搜图请点击输入图片描述(最多18字)旁路二极管:是指并联于太阳能电池板正负极两端之间的二极管,能够有效地防止硅电池片因热斑效应而烧毁,是光伏太阳能组件的重要组成部分,旁路二极管的质量直接影响着光伏电站的发电量及使用安全。编辑搜图请点击输入图片描述(最多18字)热性能测试旨在确定二极管的温度特性以及
    普赛斯仪表 2024-02-21 14:20 37浏览
  • 据传感器专家网获悉,2月20日国产3D 视觉传感器龙头企业奥比中光发布公告,终止2023年度向特定对象发行A股股票事项,该定增项目涉及超15亿元资金。传感器专家网https://www.sensorexpert.com.cn专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器产品与技术,对广大电子制造从业者与传感器制造者提供精准的匹配与对接。关于终止本次向特定对象发行股票事项的原因,奥比中光在公告中介绍称:
    传感器专家网 2024-02-20 21:24 70浏览
  • 瑞典乌普萨拉,2024年2月20日 – 全球领先的嵌入式系统开发软件解决方案供应商IAR宣布:推出其旗舰产品IAR Embedded Workbench for Arm功能安全版的最新版本9.50.3。此次发布进一步加强了IAR支持开发人员创建安全、可靠和符合标准的嵌入式应用程序的承诺,涵盖了汽车、医疗设备、工业自动化和消费电子等多个行业。该版本中最重要的新功能是经过认证的C-STAT,这是专为安全关键应用程序设计的静态代码分析工具。 IAR Embedded Workbench for
    电子科技圈 2024-02-21 15:39 51浏览
  • 质量管理办法一直是各大企业最核心的根本,例如:国际标准ISO 9000:2015中提出的质量管理 (QM)七项原则、知名车厂的8D (福特)、A3 (丰田) Report以及因应工业4.0所延伸出的质量4.0管理办法等。然而,在谈论全面性的质量管理前,无论企业采用何种质量管控办法,产线良率筛检的环节若无法有效把关,则一切都白费了,面对大批量的生产过程中,需要做到更快、更多、更有效的数据管理,仅靠耗时量少的人工抽样检测,是无法满足现今高质量管理需求的。无法有效把关,出现种种潜在风险1.检测量能不足
    百佳泰测试实验室 2024-02-21 15:23 45浏览
  • 一、实验目的了解AD9833的芯片特性和输出波形的原理,并实现基于AD9833产生正弦波输出。二、实验原理StarterWareStarterWare是一个免费的软件开发包,它包含了示例应用程序。StarterWare提供了一套完整的GPIO寄存器配置接口,简化了开发步骤,程序开发时只需要调用相应接口即可。安装StarterWare 后,可在安装目录下找到 C6748 所有通用库函数和对应的源码(StarterWare的 drivers 目录下,部分位于其他相关目录下),同时可在安装目录docs
    创龙教仪 2024-02-21 14:27 39浏览
  • HDMI是市场上影音产品的主流接口之一,随着电竞市场蓬勃发展,HDMI 2.1规格针对电竞产品新增加了VRR(可变刷新频率)功能,让用户在玩游戏时可以减少画面的撕裂延迟等现象。VRR功能目前已普遍支持PS5、Xbox等游戏机或是Nvidia、AMD等高阶显卡,也成为消费者在考虑购买电竞屏幕时的重要评估指针。电竞屏幕画面延迟风险与解决方案电竞屏幕属于高阶产品,且客群非常重视其效能表现,百佳泰与市场上主流品牌及ODM在屏幕上有着长期的合作,我们在实测中发现导入了VRR功能的屏幕却仍发生画面不顺畅的状
    百佳泰测试实验室 2024-02-21 16:42 60浏览
  • 很高兴在面包板社区获得清华大学出版社出版的《物联网鸿蒙系统App开发》一书的试读机会!《物联网鸿蒙系统APP开发》首先用一章的篇幅介绍了智能手机操作系统的发展历史、智能手机操作系统的开放与封闭之争及其各自的优势、鸿蒙系统的发展历史、鸿蒙系统在物联网时代的优势、鸿蒙系统的特点和鸿蒙系统的分层架构。接下来就是本书的主题内容:从鸿蒙的开发环境讲起,然后从创建第一个鸿蒙App开始,从用户界面布局开发、常用UI组件开发、鸿蒙页面及数据服务开发等11个角度介绍了鸿蒙系统开发的方方面面。最后一章简单介绍了鸿蒙
    goldjack_680784864 2024-02-20 23:08 64浏览
  • 一百三十多年前,奔驰夫人贝尔塔为了回击社会舆论对奔驰一号的质疑,驾驶着奔驰汽车从曼海姆出发,直驶104公里外的位于普福尔茨海姆的娘家,全程虽开的磕磕绊绊,但却为汽车的宣传起到了极佳的作用。直至今日,汽车领域新技术的应用依旧会伴随着各种质疑,软件定义汽车的新趋势不断发展,对其的质疑,要求行业对汽车软件要更加严格把控,汽车软件测试日益成为汽车电子开发领域不可忽视的一环。面对当前汽车软件测试的高要求,针对汽车软件代码的测试,会成为软件定义汽车时代势必要关注的内容。而VectorCAST作为汽车电子行业
    北汇信息 2024-02-21 13:57 64浏览
  • 各大Logo更新汇报 | NEW百佳泰可提供超过30种标准认证测试,特为您整理2024年2月各大Logo的最新规格信息。Matter▶3月5日至12日SVE规格验证活动■ 预计地点» 加州旧金山» 中国▶3月18日 – 第21次会员大会» 新加坡PCI Express▶PCI-SIG合规研讨会 #128■ 2024年2月20日至2月23日■ 台北万豪酒店▶PCIe 7.0规范第三版现已开放给会员USB▶USB 供电版本控制■ 符合USB
    百佳泰测试实验室 2024-02-21 16:23 48浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦