详解ARM几个常见的寄存器

一起学嵌入式 2024-02-04 19:25
扫描关注一起学嵌入式,一起学习,一起成长


大家好,今天来聊聊对于ARM几个特殊寄存器的理解,FP、SP和LR。

1、介绍

  • FP:栈顶指针,指向一个栈帧的顶部,当函数发生跳转时,会记录当时的栈的起始位置。
  • SP:栈指针(也称为栈底指针),指向栈当前的位置,
  • LR:链接寄存器,保存函数返回的地址。

关于gcc就有一个关于stack frame的优化选项,加上该选项则忽略掉FP栈顶指针,(记得高版本默认是不加FP的,gcc4.8以上吧(待确认))

  • -fomit-frame-pointer

Don’t keep the frame pointer in a register for functions that don’t need one. This avoids the instructions to save, set up and restore frame pointers; it also makes an extra register available in many functions. It also makes debugging impossible on some machines.

(大概意思 )不需要栈帧的时候不要加这个编译选项,这可以节省很多指令去保存,传递和恢复,同时也省出一个寄存器可以在函数中做更多事情,也使得在某些机制下更容易去debug

arm cc5编译也有关于FP生成的编译选项,默认是不加的。

  • –use_frame_pointer, --no_use_frame_pointer

Sets the frame pointer to the current stack frame. Using the --use_frame_pointer option reserves a register to store the 「frame pointer」. For newer processors that support Thumb-2 technology (ARMv6T2 and later), the reserved register is always R11. (arm v7)如果是arm v8 -a 系列,则是X29来表示。For older processors that do not support Thumb-2 technology, the reserved register is R11 in ARM code and R7 in Thumb code. Default「The default is --no_use_frame_pointer」. That is, register R11 (or register R7 for Thumb code on older processors) is available for use as a general-purpose registe

2、作用

2.1 FP的作用

关于APCS(ARM Procedure Call Standard,ARM 程序调用标准)的说法 ,

  • 除非子程序没有修改链接寄存器,否则FP都需要记录有效的栈帧位置
  • 其寄存器(r11或者x29)不能被用做一个通用型的寄存器

FP的主要作用就是用来「栈回溯」,找到子程序的调用关系,也成为backtrace,当然一级一级的子程序调用时,FP的记录也在变化,也会一级一级的保存到栈中,最后通过FP的值来反推出一级一级的调用关系。

以ARM CC5 编译器为例,其栈回溯的主要逻辑如下图所示:

通过上图可以看出,main->fun1->fun2,每调用一级的时候,都会将FP、LR以及参数等压栈,而每个FP指向了上一级的栈顶,通过保存关系,可以找到LR,从而找到上一级的调用函数。

具体的流程图就如右图所示,按照这样的方法可以找到backtrace,再比如可以通过stack memory查找调用栈信息,


左图为栈memory 右图为寄存器信息。

上图中:backtrace 第一级是寄存器中的LR,之后就是从栈中进入回溯来找到的。(FP、LR) 1、0x1F7BC 0x40BBAA4 2、0x1F7E4 0x18A3C 3、0x1F7EC 0x18818 4、 0x1F7F4 0x40A4108 5、 0x1F7FC 0x1594 6、 0x184BC 0x40A0015

图中 LR地址都-4 这是因为LR总是保存PC的下一个运行地址,所以找到PC进函数的位置,则需要LR-4可以得到。

图中 最后栈停止回溯,可以看到栈的边界到了0x1f800,所以停止,不然会继续一直进行回溯。

backtrace的C代码如下

void get_backtrace(u32 lr, u32 fP)
{
 u8 backtrace_deep = 0
 u32 stack_limit=getStackLimit()
 u32 stack_base=getStackBase()
 
 printf("Bactrace info:\n")
 do{
  if((fp <= stack_base) &&(fp >= stack_limit))
   break;
  lr = *(u32*)(fp)
  lr (lr == OxFFFFFFFF || lr == 0x0
   break;
  fp=*(u32*)(fp-sizeof(u32))
  if(backtrace_deep++>MAX_BACKTRACE_DEPTH)
   break;
 }while(1);
 printf("\n");
}
12345678910111213141516171819
2.2 SP的作用

sp 为栈指针,通过push pop 实现对栈存储的访问,栈主要是用来存储局部变量 中间值 等数据,同样和全部变量等存储的区域一样,也是一块memory,没有任何区别,只是使用的方式不一样。

接下来简单介绍一下各个处理器架构的SP指针。

  • CortexM3/4(ARMv7)
  1. CortexM3/4中,「SP分为MSP与PSP」,主栈与线程栈,任何时刻只有一个栈指针有效,通过「CONTROL 寄存器」来选择栈指针。
  2. 程序刚运行时就处在主栈(特权模式),之后可以切到线程栈(非特权模式),之所以设置这样的原因是,一般OS会运行在主栈,而应用程序出在线程栈,应用程序即使出错,也不会影响OS的运行,也不会影响主栈。通过简单的程序无需这样运行,直接在主栈特权模式下面运行就可以。
  3. MSP的初值通过存储器的第一个DWORD中获取。
  4. MSP与PSP 都是32位,低两位均是0.

  • CortexR5(Cortexv7)
  1. Cortex R5系列比较复杂,继承了多种工作模式的特性,大多数模式下都有独立的栈。


  2. 总共七种工作模式,SYS/FIQ/SYS/SVC/ABORT/IRQ/UND 以及USER,前面六种都是特权模式 后面是用户模式也是非特权模式。可以看到基本都有独立的栈寄存器,意味着每个模式下可以设置独立的栈空间
  • CortexA53 (ARMv8 -A系列)
  1. 其有变化了 分为EL1 EL2 EL3 EL4四种模式(AArch64状态)。每种模式下有自己的SP指针,SP_EL0,SP_EL1,SP_EL2,SP_EL3。通过SPSel来选择是哪一种的SP指针。
  2. SP_EL1t 代表SP_EL0的指针,SP_ELxH代表相应等级下的SP指针。
  3. 如果用作基址运算时,SP的低四位[3:0]必须为0,否则会产生SP非对齐异常,系统自动会进行check。
CheckSPAlignment()
 bits(64) sp = SP[];
 if PSTATE.EL == EL0 then
  stack_align_check = (SCTLR[].SA0 != '0');
 else
  stack_align_check = (SCTLR[].SA != '0');
 if stack_align_check && sp != Align(sp, 16) then
  AArch64.SPAlignmentFault();
return;
123456789

由下图可以看到EL3下的SP有值,且与系统的SP值相同(X15下面),则处于EL3模式。

2.3 LR的作用
  1. LR为程序跳转时需要用到的寄存器,用来保存「返回地址」(同时也包含异常返回地址)。

  2. 程序经常会存在调用关系,当程序执行完子程序之后,肯定会返回到主程序,这是返回到主程序的地址就是在LR保存。

  3. 在一些CorteM系列的处理,LR的第0位会置1 表示,表示Thumb状态。

  4. 当然没有LR这个寄存器也可以的,直接将返回地址保存到栈中,最后执行完之后弹出到PC也行,但是寄存器的访问速度可以远高于栈(存储器SRAM),所以LR的作用还是很明显的。

  5. 此外对应ARMv8系列,还有ELR寄存器,对应的是异常状态下的返回地址。

    a. 当程序执行到异常时,异常的返回地址保存到ELR中,当然ARMv8有四种模式,EL0没有异常处理,所以只有三个ELR寄存器,处理三种异常时的返回地址。b. AArch32到AArch64状态时,保存的是32位的地址,高8位均为0。

2.3.1 LR的地址保存

当假如程序A->B->C,

void A()
{
 ....  //1地址
 B();  //;BL B
 .... //2地址
 return;
}
void B()
{
 .... //3地址
 C(); //BL C
 .... //4地址
 return;  //pop lr->PC
}
void C()
{
 ....
 return//B LR
}
12345678910111213141516171819
  1. 程序A调用B程序,此时LR更新为「2地址」
  2. 跳转到B程序时,B发现还要跳转到C程序,所以LR会被覆盖,所以在B程序开始的时候,会讲LR保存到栈中。
  3. 挑转到C程序时,此时LR更新到「4地址」
  4. C程序执行开始时,发现没有子程序跳转了,所以此时的LR不会被覆盖,所以也不需要将LR保存,退出时直接跳转到「4地址」即可。
  5. B程序执行完时,发现LR还是错的,会将压栈的LR弹出,这样程序就可以回到「2地址」
  6. 如此一来,程序就完成调用过程,全部执行完毕。
2.3.2 接着来说跳转的指令
  • B
    • 用法:B Lable,直接跳转Lable处的地址,不改变LR,有限范围内的跳转,是不返回的跳转。可以看到上图B跳转的地址 就是在附近,说明可能是跳到后面的程序的指令,不带返回的。
  • BL
    • 用法:BL Lable,将LR=PC+4,(比如在32位程序上+4,Thumb是+2,64位程序上可能是+8)然后跳转到Lable地址,带链接的挑战,说明还会回来的。图中0x8000F300 地址不在该程序范围内,说明是跳到其他地址处 执行完成之后,w0是返回值,然后再跳到此次,是带链接的跳转。
  • BX:
    • 用法:BX Lable,跳转到对应Label地址,Lable中最后一位(bit)为指令集标志,1表示Thumb,0表示ARM状态,可能会进行模式切换,是不返回的跳转。
    • 用法:BX reg,跳转到 reg里面保存的地址,同上,可能会切换模式。该程序直接跳到lr所指示的地址,即返回地址。
  • BLX:
    • 用法:BLX Lable,跳转到对应Label地址,可能会切换模式,同时LR保存了返回的地址。
    • 用法:BLX reg,跳转到 reg里面保存的地址,可能会切换模式,同时LR保存了返回的地址。
  • BR:
    • 用法:BR reg,跳转到 reg里面保存的地址,是不返回的跳转。
  • BLR:
    • 用法:BLR reg,跳转到 reg里面保存的地址,同时LR保存了返回的地址。
  • B.
    • 用法:B.Cond label,根据状态位进行跳转,比如 ZCNV 等状态位,
    • 例如:BHI Lable 、BCS Lable
    • b.cs 如果w8 >= 0x397 则跳到0x800c0988地址处。
原文:https://blog.csdn.net/qq_34430371/article/details/121795096

文章来源于网络,版权归原作者所有,如有侵权,请联系删除。



关注【一起学嵌入式】,回复加群进技术交流群。



觉得文章不错,点击“分享”、“”、“在看” 呗!

一起学嵌入式 公众号【一起学嵌入式】,RTOS、Linux编程、C/C++,以及经验分享、行业资讯、物联网等技术知
评论
  •   头部技术企业核心能力与行业解决方案解析   华盛恒辉科技有限公司   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转型、新能源软件、光伏软件、汽车软件,ERP,系统二次开发,CRM等领域有很多成功案例。   五木恒润科技有限公司   五木恒润科技有限公司:是一家专业的部队信息化建设服务单位
    华盛恒辉l58ll334744 2025-05-19 17:18 122浏览
  •   在数字技术重塑商业格局的当下,品牌如何借助创新工具实现价值跃升成为企业战略核心。软件开发已从单纯的技术迭代载体,演变为企业连接用户、驱动增长的关键纽带。因此,筛选靠谱的软件开发公司,成为企业数字化转型的重要决策 —— 专业公司凭借技术积累与行业经验定制解决方案,权威公司则以规范服务与交付能力保障项目落地。   筛选靠谱软件开发公司的三大核心标准   标准 1:技术适配性与行业匹配度   技术适配性:优先选择掌握云计算、AI 集成、低代码开发等前沿技术的团队。   行业匹配度:医疗
    华盛恒辉l58ll334744 2025-05-20 15:46 57浏览
  • 【拆解】+TFT LCD 通用测试仪拆解 目前对于车载行业,显示屏在整车的份额越来越高。各个供应商或者下级供应商都会回针对TFT的开发做规划。那么,在TFT测试方面,他们是如何进行产品开发前的测试和有效性验证的内。是的,无非就是他们公司自己开发点亮治具或者从治具供应商那边购买点亮设备。客户只需要提供客户需求。有能力的供应商就好针对需求进行分解开发。在规定的时间内完成产品的开发和交付。今天我们就来看看用在车载显示屏或者消费电子上面的TFT点亮治具—TFT LCD通用测试仪式怎么设计出来的。 如下就
    zhusx123 2025-05-18 14:07 109浏览
  • 什么是互斥量互斥量的应用场合互斥量的API函数基本代码结构互斥量使用举例递归锁递归锁举例总结什么是互斥量在freeRTOS中,多个任务访问一块共享资源,会产生竞争现象。比如马路上只有一个很早以前的电话亭,A、B都想要打电话,然后他们就开始打架了。但是如果A先进去了然后把门锁了,B想进去打电话的话只能在外面等,必须等到A把门锁打开。互斥量的应用场合像freeRTOS的多任务系统,任务A正在使用某个资源,还没用完的时候,任务B也来使用,就可能会导致问题。就比如串口,任务A正在用串口发送数据,此时任务
    二月半 2025-05-18 20:54 115浏览
  • 北京贞光科技作为三星电机一级代理商,提供全面升级的技术支持、样品供应和供应链保障服务,为客户提供专业、可靠的一站式解决方案,满足AI基础设施不断发展的需求,支持更高效、更强大的人工智能应用计算系统的开发。如需更多产品信息或技术支持,请联系贞光科技。三星电子在被动元件技术领域取得重大突破,推出专为AI服务器应用设计的超小型高容量多层陶瓷电容器(MLCC)。这些新组件解决了现代AI计算基础设施不断增长的电力需求,同时优化了密集服务器环境中的空间利用率。 满足AI服务器电力需求现代AI服务器
    贞光科技 2025-05-20 11:38 71浏览
  • 在智能化、数字化与信息化的时代浪潮下,物联网凭借着多频段间的通信协同能力与多协议间的通信兼容能力构建起了一张张无缝互通的IoT设备网络。从Sub-GHz频段到2.4GHz频段,从BLE/Wi-Fi协议到LoRa/Wi-SUN协议,多种频段资源与通信协议不仅推动了智能抄表、智能家居与工业自动化等领域的繁荣发展,还为万物互联的未来愿景奠定了坚实的底层通信基础。然而,随着无线通信技术的高速发展与全球IoT设备数量的持续增长,频段资源的有限性愈发凸显,在科技园区、交通枢纽与CBD等通信密集区域,同一频段
    华普微HOPERF 2025-05-20 11:07 72浏览
  • 电磁场的作用主要体现在以下几个方面:首先在能源领域,电磁场是发电、输电的基础。无论是火力发电还是核电站,*终都需要通过电磁感应原理将机械能转化为电能。高压输电线路则利用交变电磁场实现电能的远距离传输,为现代工业和生活提供动力保障。在通信技术方面,电磁波作为电磁场的传播形式,构成了无线通信的基础。从无线电广播到5G移动网络,从卫星通信到光纤传输,本质上都是对特定频段电磁场的**控制和利用。雷达系统通过发射和接收电磁波实现目标探测,在气象预报、航空管制等领域不可huo缺。在医疗领域,电磁场技术为诊断
    锦正茂科技 2025-05-19 13:19 68浏览
  • 什么是信号量信号量能干啥信号量的函数实例举例总结什么是信号量简而言之,就是发出通知,接收通知的任务获得通知后去干啥啥。通知有多有少。自定义通知数量的,叫计数型信号量;只有有无(即“0”,“1”)通知的,叫二进制信号量。信号量能干啥资源管理:控制多个任务对共享资源(如外设、内存块)的访问权限,避免竞争条件任务同步 :实现任务间的时序协调(如等待某个事件完成)中断与任务通信:在中断服务程序(ISR)中快速通知任务处理事件(需使用 xxxFromISR 版本的函数)信号量的函数创建二进制信号量函数原型
    二月半 2025-05-18 20:48 111浏览
  • 随着智能硬件设备的快速发展,蓝牙音频语音芯片在智能家居、穿戴设备、车载电子等领域得到广泛应用。蓝牙音频语音芯片凭借其低功耗、高集成度和灵活的通信接口,成为许多开发者的选择。然而,在实际应用中,开发者可能会遇到IC芯片通过串口或MCU通信时无响应的问题。本文将从通信接口配置与故障排查角度,普及相关知识并提供解决方案。一、通信接口基础配置串口接线规则蓝牙芯片的串口通信需遵循“交叉连接”原则:TX(发送端)→ RX(接收端)RX(接收端)→ TX(发送端)若接线错误(如TX-TX或RX-RX直连),数
    广州唯创电子 2025-05-19 09:47 49浏览
  • 电磁场是自然界中一种特殊的物质存在形式,由相互依存且能够相互转化的电场和磁场共同构成。这种无形的物理场充满整个空间,既能够传递电磁力,也能够以电磁波的形式传播能量。电场源于静止或运动的电荷,表现为对带电粒子施加作用力的能力;而磁场则产生于电流或变化的电场,能够影响运动电荷的轨迹。两者通过动态耦合形成统一的电磁场系统,其行为规律由麦克斯韦方程组完整描述。这个方程组包含四个基本方程,分别揭示了电荷如何产生电场、磁场无孤立磁荷的特性、变化磁场激发电场的规律,以及电流与变化电场共同产生磁场的机制。电磁场
    锦正茂科技 2025-05-19 13:07 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦