L3自动驾驶的“双保险”:冗余EPS关键技术解析



关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

引言
在乘用车领域,电动助力转向系统(Electric Power Steering,EPS)相比传统的液压助力转向系统(Hydraulic Power Steering,HPS)具有结构简单、响应迅速、能耗低等优点,因此应用很广。随着智能驾驶的发展,作为底层执行系统的电动助力转向系统(EPS)也迎来了新的机遇与挑战。为了满足L3级以上自动驾驶的需求,同时提升智能驾驶的驾驶体验、安全性、可靠性等,要求电动助力转向系统(EPS)在发生单点失效的情况下,依然具备一定的助力能力。因此,冗余电动助力转向系统,即冗余EPS,成为L3级以上智能驾驶系统的关键零部件。

本文主要介绍冗余EPS的发展路径和关键技术。

一、转向技术发展路径

转向系统是汽车底盘的关键部件之一,对于汽车的操稳性、安全性、舒适性起到至关重要的作用。随着汽车工业电动化的深入,转向系统经历了从机械转向系统(MS)、机械液压转向助力系统(HPS)到电子液压助力转向系统(EHPS)、电动助力转向系统(EPS)的发展历程。相比机械和液压转向系统,电动助力转向系统(EPS)的结构更加简单、助力控制响应更快,同时能耗也更低,而且不需要保养和维护,大大提升了用户的驾驶体验。汽车工业电动化的同时,智能化成为了转向技术发展新的驱动力。为了更好地满足自动驾驶的需求,转向系统需要有更高的安全性和可靠性,从而保证转向系统在出现电气系统故障的时候整车仍然可以进入安全状态甚至继续安全驾驶。因此,冗余EPS、线控转向系统(SBW)开始进入人们的视野。其中线控转向(SBW)相比冗余EPS最大区别在于方向盘和执行机构之间无机械连接,因此在成本控制、设计灵活性、功能丰富性、空间布置等方面具有明显优势。
转向系统作为底盘核心零部件,具有很高的技术壁垒。我国汽车工业起步相对较晚,因此当前德国、美国、日本、韩国的供应商巨头仍然占据着转向系统的大部分市场,尤其是冗余EPS和线控转向系统,国内仍然处于追赶的状态。但是随着国内汽车产业链的日渐成熟,一些企业也开始逐步掌握转向系统的核心技术,未来有望快速提升所占的市场份额。

二、冗余EPS技术方案


冗余EPS系统主要由机械系统部件、转矩转角传感器总成(TAS)以及电控单元(Powerpack)组成,如图2-1所示。以皮带传动齿条助力转向系统(R-EPS)为例,机械系统主要由齿轮齿条副、滚珠丝杠传动机构、皮带传动单元、转向横拉杆等组成。可支持的最大齿条力达到16kN以上,能够满足豪华轿车、SUV以及商务车的要求。转矩转角传感器总成用于检测转向扭矩和方向盘转角,主流的冗余传感器方案通常能够提供4路转矩信号和2路转角信号,显著提升了安全性。电控单元是冗余EPS的核心部分,由助力电机以及驱动和控制单元组成,助力电机通常采用六相或十二相无刷直流电机,由于单点失效导致其中三相无法正常驱动时,剩余部分仍可正常工作,为转向系统提供助力。驱动和控制单元集成在电机的后端,由驱动板、控制板、散热器、外壳等组成。


图2-1  冗余EPS系统方案示意图

基于双三相无刷直流电机的全冗余电控方案如图2-2所示,整个方案采用了双路独立外部供电、双路外部CAN/CANFD通信以及冗余的转矩、转角传感器信号。电机驱动单元、电机位置传感器、电源管理单元、主控MCU也都采用了双备份的冗余架构。主控MCU采用带锁步核的32位芯片,具有较高的算力,同时最高支持ASIL-D功能安全等级。双MCU之间采用CANFD通信,实现信号交互、力矩指令传递、故障诊断信号交互等,可以起到相互监控的作用,必要时支持主辅切换,提升了整个系统的安全性和可靠性。

根据《GB/T 40429-2021 汽车驾驶自动化分级》对于L3级自动驾驶的定义,车辆在有条件设计运行范围内运行,允许驾驶员注意力离开驾驶任务,但是在系统提示需要接管的时候应该进行适当的响应。基于上述冗余方案,电气系统在出现单点失效的场景下,最多损失50%的助力能力,因此对于大部分限定条件下的L3级自动驾驶功能,能够保证整车在系统提示接管到驾驶员完成阶段的时间段处于安全状态。


图2-2  冗余EPS电控方案示意图

三、冗余EPS关键技术

3.1 冗余策略与安全机制

如图3-1所示为冗余EPS的双MCU架构。双MCU(ECU A和ECU B)都实现完整控制功能,上电初始化后默认分配主从角色。正常工作状态下,双系统均进行力矩指令计算,但是从系统响应主系统分配的扭矩指令。如果系统发生单点失效,双MCU根据故障诊断与处理机制判断是否进行主从切换,必要时从系统切换为主系统。


图3-1 冗余策略与安全机制示意图

3.2 基础助力算法

基础助力算法的主要作用是为驾驶员提供助力同时保证驾驶员具有良好的驾驶手感,其算法架构如图3-2所示。


图3-2 基础助力算法架构

基础助力算法包含随速助力、高频助力、稳定性补偿、横摆阻尼控制、主动回正控制以及惯量补偿等模块,各个算法模块作用如下:

  • 随速助力:提供随车速变化的助力,提供驾驶员中间位置感觉,中心区域到两侧要使驾驶员有力的建立的感觉;
  • 高频助力:能够消除系统的惯性,减少粘性和提高应答性,并消除反向或快速转向时的助力延迟;
  • 稳定性补偿:在低频段保持真实的手感;中频段降低系统增益,防止系统共振;高频段提升系统的相位裕度,增加稳定性和快速性。
  • 横摆阻尼控制:增加系统的稳定性,防止方向盘在回正过程中出现“摇头”现象。
  • 主动回正控制:主动回正控制在车速较低时给系统一个额外的回正力,提升驾驶员的驾驶体验。
  • 惯量补偿控制:计算电机惯量补偿力矩,并叠加到助力力矩上,使得电机的惯量不影响转向手感。

3.3 高级助力功能

高级助力功能在基础助力的基础上进一步提升驾驶的舒适性以及安全性,高级助力算法架构如图3-3所示。


图3-3  高级助力算法架构

高级助力算法包含摩擦补偿模块、侧风补偿模块、加速跑偏补偿模块、直行跑偏补偿模块、路面震颤抑制模块等,各个算法模块的作用如下:

  • 摩擦补偿:摩擦补偿功能来弥补转向系统产生的摩擦从而保证转向力的舒适性;补偿目标和当前转向感觉之间的差异。
  • 侧风补偿:遇到较强侧风时,应具有保证车辆稳定直线行驶的能力,防止侧风导致车辆发生偏转而偏离直线行驶轨迹。
  • 加速跑偏补偿:急加速的过程中,左右车轮上的牵引力不一致导致行驶跑偏的时候,通过补偿来保持直线行驶。
  • 直行跑偏补偿:正常直行过程中如果存在一定的跑偏现象,可以通过直行跑偏补偿进行适当缓解。
  • 路面震颤抑制:路面震颤抑制算法检测轮速信号,同时对手盘力矩中与轮速频率正相关的频率特征进行提取后,在最终施加给电机的力矩中减掉这一频率特征信号与路面震颤进行抵消,从而达到抑制的目的。

3.4 外部请求控制

冗余EPS的外部请求控制功能包含自动驾驶相关的功能以及底盘稳定性相关的功能。自动驾驶相关的功能有转矩叠加控制(Torque Overlay)、转角叠加控制(Angle Overlay)、绝对转角控制、泊车转角控制、方向盘振动提醒等,底盘稳定性相关的功能包含Driver Steering Recommendation(DSR)功能。不同功能的原理介绍如下:

  • 转矩叠加控制:能够响应智能驾驶控制器要求的叠加扭矩,实现如车道保持辅助(LKA)等高级驾驶辅助(ADAS)功能。转向系统的转矩叠加控制算法需要系统兼顾ADAS功能的安全作用和混合驾驶舒适性。
  • 转角叠加控制:能够响应智能驾驶控制器要求的角度跟踪指令,并在EPS内部通过合理的计算转化为叠加扭矩指令。基于转角叠加控制实现的LKA功能能够更好地实现车道线跟踪的效果,进一步降低驾驶员的驾驶压力。作为ADAS功能的接口,转角叠加控制功能同样需要兼顾ADAS功能的安全作用和混合驾驶舒适性。
  • 自动驾驶转角控制:L3+自动驾驶场景允许驾驶员的双手离开方向盘,此时转向系统通过自动驾驶转角控制功能来精确、快速地响应智能驾驶控制器的目标转角指令,对于角度控制的精度要求很高。在此场景下,无需考虑混合驾驶的场景,但是需要保证驾驶员驾驶与自动驾驶状态切换过程的安全性和舒适性。
  • 泊车转角控制:泊车转角控制用于智能驾驶的低速泊车场景,该场景下要求转向系统能够快速响应泊车控制器的目标转角指令。
  • DSR功能:该功能用于转向与制动系统的协调控制场景。当ESC检测到抱死或侧滑即将发生时,通知EPS施加一个力帮助驾驶员进行转向操作,可以有效的降低刹车距离、防止或减弱甩尾现象。
  • 方向盘振动提醒:通过助力电机的高频振动来实现方向盘振动提醒功能,振动强度多档可调,可用于车道偏离预警等ADAS功能。

图3-4  外部请求控制功能

四、小结

冗余EPS已经成为当前L3+自动驾驶场景下的核心技术。相比传统的非冗余EPS,冗余EPS需要更加复杂的系统架构和更加复杂的功能来保证车辆的安全性、可靠性和驾驶体验,因此也有更高的技术壁垒。国际领先的供应商已经在该领域积累多年,国内的供应商也在积极追赶,相信未来能够为消费者提供更多安全、可靠、舒适的产品。


-END-

关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

智能汽车电子与软件 专注于汽车电子领域的信息交融平台,涵盖汽车电子行业资讯、市场动态、技术干货、知识见解、行业趋势等资讯深度覆盖。
评论
  • 当数千伏工业电机快速启停时、当高速充电桩断电恢复时、当光伏逆变器遭遇雷击时,高压侧电路可能会因电感电流突变或浪涌耦合,产生幅值达母线电压数倍的电压尖峰。而在缺乏有效电气隔离措施或在寄生电容耦合作用的情况下,这些电压尖峰会迅速传导至低压侧电路,瞬间击穿MCU、传感器等敏感元器件,严重时还会威胁到操作人员的生命安全。因此,在现代电力电子系统的高低压电路之间引入隔离芯片,建立安全可靠的电气隔离屏障,已成多项安全标准与通用规范中的明确要求与刚性规定。其不仅能防止高压浪涌、短路漏电等不良现象损坏敏感元器件
    华普微HOPERF 2025-06-18 15:52 4090浏览
  •   再次拆开来,干脆放上电池看看,呵呵,转呀!  嘀嗒嘀嗒声好听,小齿轮转啊转尊,挺有活力啊!  莫非是活动关节受阻?  仔细,用放大镜观察,真是的!轴承与转杆接触位有污垢。  拆解下来,用酒精仔细清洗干净,看看纸上是刷子擦下来的污迹。  顺便把PCB、其他可能的零部件,也用酒精擦一擦  清洗清洁后的的各个零部件。  再看看电极接触点,有磨损,露出了底下的铜金属。  想想,用焊锡填补吧!  金属表面不太接受,总算有了一点焊锡,试试看吧!  再组装回去,装上电池,不转动!  再拆开来,到底是那个零
    自做自受 2025-06-21 12:19 2338浏览
  • 文/Leon编辑/cc孙聪颖6月9日,美团在北京美团总部恒电大厦举行股东周年大会,美团创始人、CEO王兴携一众高管出席。在回答股东问题的环节,王兴谈及与京东、淘宝闪购的竞争时表示:“第一,我们非常欢迎更多参与者入场的;第二,再次重申美团是坚决反对内卷的;第三,我们对长期是很有信心的。”然而,据自媒体《划重点》公开报道称,有参会股东透露,疑似提前安排好的问题和管理层全程读稿式的回答令部分现场股东感到不满。在会议结束后,现场股东将负责市场和投资的副总裁徐思嘉围了起来,在小会议室继续沟通了半个小时。不
    华尔街科技眼 2025-06-17 19:11 1807浏览
  • 中国汽车市场以年均超 3000 万辆的销量规模(占全球 1/3以上),正推动安全标准从被动防护向主动预防转型。2024 年 7 月实施的 C-NCAP ( China New Car Assessment Program)修订版首次将驾驶员监控系统(DMS)、道路特征识别(RFR)纳入评分体系,其中 DMS 占主动安全分值 40%(总分 2 分),检测准确率需≥90%。这一变革不仅响应工信部 GB/T 41796-2022 等三项国家标准要求,更标志着中国
    康谋 2025-06-18 10:25 2124浏览
  • 随着智慧居家中与智能家电快速发展,各类产品纷纷透过无线技术和行动软件(APP)实现更智能的服务,让原本单一功能的产品,逐步进化变身为多功能且提供人性化功能的智能家电。本篇的主角-智慧居家门铃(Doorbell),正是其中具代表的应用之一。智能门铃整合了传统门铃与对讲机功能,再加上摄影机的功能,进而成为新世代的智能产品!用户可以透过镜头,立即看到来访者并进行对话。更进阶的应用则是结合高分辨率的摄影机、无线连线与APP整合,让用户不再经由传统有线线路,即可远程实时了解门外的一切状况。实测案例本次案例
    百佳泰测试实验室 2025-06-19 13:42 4154浏览
  • 在竞争白热化的智能汽车赛道,深蓝汽车近期因一系列“迷之操作”,被舆论的熊熊烈火炙烤得焦头烂额。事情起因是,大量深蓝汽车老车主公开吐槽称,深蓝汽车在没经过车主同意的情况下在车机大屏幕投放广告。为此,深蓝汽车及其CEO邓承浩发文道歉,并表示:内部已进行了流程优化,未来将不再通过车机通道给用户推送权益提醒。不过,道歉后深蓝汽车对用户隐私条例进行了更新,主要新增了用户数据采集,如果用户不同意更新,则只能以游客身份访问App。所以又有网友辣评,“这是要强行让大家同意看广告?”对此,深蓝汽车法务部发文回应:
    用户1742991715177 2025-06-17 18:21 1580浏览
  • 概述相关API函数举例:定时发送一个事件总结概述ESP32有一组外设--定时器组。它可以选择不同的时钟源和分配系数。该定时器应用灵活,超时报警可以自动更新计数值。相关API函数1.定时器配置结构体typedefstruct { gptimer_clock_source_tclk_src; /* 定时器时钟源,在clk_tree_defs.h中有个枚举soc_periph_gptimer_clk_src_t */ gptimer_count_direction_tdirection;
    二月半 2025-06-17 16:39 15436浏览
  • 作为自然界最敏锐的“通用语言”之一,从破土而出的植物新芽到钢铁熔炉中的炽热火焰,温度一直都在无声地影响着万物运行的节奏,它不仅是农业播种与收获、牧业养殖与繁育、工业材料加工与产品制造等领域的关键生产因素之一,更是所有地球生物赖以生存的重要气候参数。因此,如何更好地“读懂”温度已成为各行各业实现提质增效的重要突破点之一,而数字温度传感器就是人类通过发展物联网技术让温度实现快速“说话”的重要途径。数字温度传感器是一种能直接输出数字信号的传感器,具有微型化、易集成、低功耗与高精度等优势,已被广泛应用于
    华普微HOPERF 2025-06-19 09:39 4665浏览
  • Micro-OLED显示技术具有高刷新率、高亮度低功耗、小体积等特点,是微显示领域的优选方案。针对Micro-OLED CVBS显示驱动需求,上海冠显(TDO)设计的驱动方案,实现CVBS信号到Micro-OLED显示屏的稳定转换和显示控制,将满足行业对高质量、高性能显示解决方案的迫切需求,为XR、军工、工业及医疗等应用领域提供更优质的视觉体验。方案架构 显示屏驱动板TV103F1CSFS01 是TDO自主开发的单目硅基 OLED 显示屏驱动板,以 SH1.0连接器为 CVB
    冠显光电MicroOLED代理视涯 2025-06-18 16:32 4036浏览
  • 在RoCE v2协议中,RoCE v2队列是数据传输的最底层控制机制,其由工作队列(WQ)和完成队列(CQ)共同组成。其中工作队列采用双向通道设计,包含用于存储即将发送数据的发送队列(SQ)和用于存储已接收到的数据的接收队列(RQ),二者共同组成了端到端的数据传输管道(Pipeline)每一个SQ与RQ绑定起来称为队列对(QP),每个队列对中包含有若干个工作队列元素(WQE)和一些其他元素如本地接收队列指针、本地发送队列指针、远程接收队列指针、远程发送队列指针等。同样的,每一个CQ中也存在着若干
    zzbwx_326664406 2025-06-18 11:49 2424浏览
  • 概述在工业自动化领域,PLC(可编程逻辑控制器)是生产过程的核心,其性能直接影响系统的稳定性和效率。然而,在多主站应用场景下,传统PLC往往面临诸多挑战,如协议兼容性不足、扩展性受限以及高昂的License费用,这些都增加了系统部署的复杂性和成本。宏集Berghof PLC基于CODESYS平台,凭借其强大的多主站支持能力和灵活的License选项,为工业控制提供了高效、灵活且经济的解决方案,助力企业优化自动化系统架构。传统PLC多主站应用的挑战在许多自动化应用中,设备需要同时支持多个通信主站,
    宏集科技 2025-06-19 10:58 3807浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦