48V5KW单相光伏并网逆变器的硬件设计


欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 905749978


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


电力电子技术与新能源小店

本帖的重点是讲述48V5KW单相光伏并网逆变器的硬件设计,用来和大家分享一下,里面有很多有价值的电路,也有很多我没有明白的地方,欢迎大家来积极讨论!

        首先上总的原理图框架:从整个逆变器的原理框图来看,分为一下八个模块:

1.CPU模块,CPU里面除了dsPIC30F3011最下系统外,还包括风扇控制,继电器控制,还有485通讯部分;

2.功率mosfet模块,像驱动电路以及PWM故障检测都放在了功率mosfet里面;

3.电流采样及过流保护模块;

4.直流与输出电压采样模块;

5.电网电压及锁相模块;

6.备用AD模块;

7.驱动电源模块;

8.系统整体的辅助电源模块!

Layout好的PCB图:

       Layout注意爬电距离和电流密度即可,前者相应的增加各布线间的线间距离,如果遇见器件之间距离无法扩大,可在机械层开槽,嘉立创要求至少0.8mm;后者相应增加各走线的铜箔宽度。

Top Layer


Bottom layer

Bottom Solder

       由于48V5kW计算出的电流约是104A,整机输出功率最大时有104A的电流,3路mosfet并联,没路分得的电流34.6A,留点裕量,要过40A电流,所以要在底层阻焊层开窗。

       开窗:有助于增加铜皮的散热能力,能提高载流能力。

        当然这个PCB也有很多的不足的地方,一位前辈的评价:

1.板子不建议做双层板,成本节省不了多少;

2.Mosfet驱动电路离得太远,并且信号回路很差;

3.接地孔周围有走线,器件,不符合安规,过不了耐压测试,接earth网络的螺丝孔,其余所有信号及器件应避让6mm以上。


        我了解的光伏并网逆变器大概有这个几种结构:

        根据有无隔离变压器,分为隔离型和非隔离型,隔离型中根据变压器的频率又可以分为高频拓扑和低频拓扑,如下图所示:图(a)推挽+不控整流+全桥逆变;图(b)全桥逆变+工频升压变压器;图(c)boost+全桥逆变,还有在此基础上的,两路boost进行MPPT控制+H5/H6桥。哈哈纯属个人理解,如有不对,请指正!

       下图摘自——太阳能光伏并网发电及其逆变控制_张兴 

         这里介绍 的48V5KW单相光伏并网逆变器,采用的是有工频变压器隔离的低频拓扑。

1.CPU模块,CPU里面除了dsPIC30F3011最下系统外,还包括风扇控制,继电器控制,还有485通讯部分;


        系统主控芯片选用的是Microship公司的dsPIC30F3011,CPU部分就是晶振,时钟,复位等。

485通讯采用的是ADM2483芯片。

       交流继电器控制电路和风扇控制电路。CPU产生0或1电平控制继电器断开与吸合和风扇停止与转动。


2.功率mosfet模块,像驱动电路以及PWM故障检测都放在了功率mosfet里面;

       功率mosfet部分总图,里面包括主回路,光耦驱动,过流保护反馈,交流继电器,交流电流采集。


主回路

        主功率电路,包括拓扑结构和mosfet功率器件的选型。先将48V的直流电逆变成低压交流电,然后用升压工频变压器升压到市电220V。采样的是H桥,4路PWM脉冲,这里输入2路48V的直流电压,2路输入的负极接一起的,采用的是三个管子并联的形式。48V5kW计算出的电流约是104A,选择MOSFET型号为IRFP4668PbF,其额定电压为200V,电流为130A,封装为TO-247AC。

光耦驱动隔离模块,采用的是HCPL-3120,很常见的高速光耦!

       和过流保护线与的保护信号,就是防止上管和下管直通的电路,反正就是保护电路了,并联在mosfet的两端的,用来检测PWM是否出现故障。


        如果上管和下管直通,那么只看PWM那条线,稳压管就被导通,然后三极管导通,然后光耦导通,拉低FLTA。以PWM1H和PWML举例:
        假如现在上管开通,理论上下管不能开通的,如果下管要开,首先,US电压时VCC,当PWM1L为高电平时,稳压管DZ7的负端这一点电压就会成为20V,相对于B1-的20V,由于US电压为VCC=48V,所以D55截止,这时MMSZ5231BT1也就是5.1V的稳压管就被击穿导通,电流通路如下:光耦就被点亮,然后FLTA就被拉低,实现保护!

交流继电器

交流电流采集,采用的是互感器ZMCT118。



3.电流采样及过流保护模块;

        采样电路,分为电流采样及保护电路,直流电压及输出交流电压采样电路,电网电压采样及锁相电路。说到电压,电流的采样有很多方法:

        电压采样可以采用以下介绍的电阻分压的方法,用运放构成差分,按比例将大电压缩小,经过电压跟谁器,送进DSP的AD口;

        还有采用LEM霍尔电压传感器,价格高,但相对精确,霍尔输入要采集的电压信号,然后输出电流信号,用检流电阻转换为电压信号,再进过运放送入CPU的内部AD或者外部AD芯片,也有直接输出电压信号的霍尔传感器,比如QDSY霍尔传感器。

        电流采样可以用电流传感器,也可以采用电流互感器。

         采集的是输出交流电流和直流电流,霍尔传感器输出的电流信号经过运放处理电路送进DSP的AD,两路过流信号通过线与送进DSP的IO口。

         电流采样电路,直流电流采样使用的霍尔电流传感器,交流电流采样使用的是霍尔电流互感器,传感器需要正负15V的供电,互感器则不需要供电,传感器可以测直流电流和交流电流,互感器则只可以测量交流电流,但是它们输出的都是缩小的电流信号,通过电阻将电流信号转换为电压信号,区别就是交流信号需要经过电压抬升然后经过稳压管限幅钳位送进AD采样。

         所测直流电流约为104A,选用的霍尔电流传感器是200A的,所测交流电流选用的霍尔电流互感器是ZMCT118,南京择明电子的一款精密电流互感器,根据功率守恒,所测交流电流5kw/220V约为22.7A,再其官网可以找到4款后缀的电流互感器,只是它们所测量的范围不一样,综合考虑,选用的ZMCT118A,线性范围0~40A(采样电阻为 50Ω),变比是2000:1。


        这里选用ZMCT118A,进过检流电阻,两个100欧并联,也就是50欧,然后经过分压,运放跟谁,电压抬升,滤波,钳位送进AD。

运用multisim对其进行仿真,结果如下:



         这里选用200A直流电流检测的传感器输出的是电压信号,因为没有检流电阻,然后经过分压,运放跟谁,滤波,钳位送进AD。


        接下来就是过流保护电路了!过流保护一般是使用比较器,像LM339,将采集到的电压信号和电压阈值相比较,输出高低电平,然后送给DSP的IO口,当然也有专门的PWM故障口,比如dsPIC30F3011的非FLTA引脚。这里直接将运放当做比较器来使用。


整个的过流保护的图,分为直流电流采样和保护,交流电流采样和保护。

        先说直流电流保护吧,传感器输出的电压信号经过分压后送给运放的负,运放的正是+15V的电压经过20K和10K的电阻分压产生5V的电压,当正常工作时输出的高电平,当过流的时候输出的是低电平。



        交流过流保护是将电压信号放大2.5倍,然后通过二极管+运放半波整流,送进运放的负,运放的正是+15V的电压经过20K和15K的电阻分压产生5.625V的电压,当正常工作时输出的高电平,当过流的时候输出的是低电平。



        输出的两路过流信号,经过二极管的单相导通互不干扰,然后线与,正常工作时输出高电平,通过BZX84C5V1LT将运放输出的大约正负15V电压稳压在5.1V,防止烧坏DSP的IO口,当过流时,输出低电平,点亮发光二极管。



4.直流与输出电压采样模块;

         参照电网电压及锁相模块



5.电网电压及锁相模块;

        电网电压采样及锁相电路,逆变器要并网,首先的要满足与电网电压的频率和相位一致,所以得采集电网电压的频率和相位,当然也可以通过软件锁相环来实现,那就不需要硬件电路将正弦波转换为方波了!


        运用multisim对电网电压采样及锁相电路进行仿真。同理可以计算出直流电压和输出交流电压采样电路。欢迎大神指正。



         这个电路貌似有一个比较完整的名字叫做浮动式差分电路采样,我实际用过差分放大,这又要感谢光伏硬件这个大神的指导了,就是将霍尔传感器输出的2.5V+-0.625的直流偏置去掉,并且放大。
       因为AD采样只能采正电压,所以就经过差分缩小大约107倍,然后在对电压进行抬升2.5V,在经过电压跟谁器和二极管钳位限幅,输出0-5V范围内的正电压送给DSP的AD采样。
       电网电压锁相电路就是把差分缩小后的正弦波装换为方波送入DSP的CAP捕获,来计算电网电压的频率和相位。
       此电路属于高阻抗采样电路,是廉价的采样电路,将采样电路信号电路的信号地与被采样功率信号地进行高阻抗隔离。



6.备用AD模块;

         备用AD楼主没看懂,有两路RV1,RV2,这个是压敏电阻的电路符号来着,估计是用来做测试用的。




7.驱动电源模块;

        驱动电源部分,采用的是3525,一个常见的做开关电源的芯片,就是用变压器将反激辅助电源出来的20V驱动电源隔离一下,分别给光耦供电。




8.系统整体的辅助电源模块!

        系统电源部分,由UC3844做个一个反激辅助电源,这个电源有两路输入,一路是外接220V的交流电网电压,猜测是用来做测试用的,还有一路是从48V的输入那里接入。产生需要给DSP最小系统供电+5V,驱动供电+20V,运放霍尔供电±15V等。


文章首尾冠名广告正式招商,功率器件:IGBT,MOS,SiC,GaN,磁性器件,电源芯片,DSP,MCU,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

电力电子技术与新能源通讯录:

Please clik the advertisement and exit

重点

如何下载《48V5KW单相光伏并网逆变器的硬件设计板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!


推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

High_Frequency_Transformers_for_HighPower_Converters_Materials

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion

Designing Compensators for Control of Switching Power Supplies

100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET

华为-单板热设计培训教材


看完有收获?请分享给更多人


公告:

电力电子技术与新能源微信群,欢迎加小编微信号:(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

在这里有电力电子技术:光伏并网逆变器(PV建模,MPPT,并网控制,LCL滤波,孤岛效应),光伏离网,光伏储能,风电变流器(双馈、直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC(LLC,移相全桥,DAB),储能(锂电池、超级电容),低电压穿越(LVRT),高电压穿越,虚拟同步发电机,多智能体,电解水,燃料电池,能量管理系统(直流微网、交流微网)以及APF,SVG ,DVR,UPQC等谐波治理和无功补偿装置等。
PSCAD/MATLABsimulink/Saber/PSPICE/PSIM——软件仿真+DSP+(TI)TMS320F2812,F28335,F28377,(Microchip)dsPIC30F3011,FPGA,ARM,STM32F334——硬件实物。
欢迎技术人员加入,多多交流,共同进步!


更多精彩点下方阅读原文

      点亮在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论
  • 分享ADC自身因素带来的误差,主要分享由于外部因素导致的ADC采样误差。 一、模拟信号源输入减少带来的误差看一个STM32的ADC转换器的示意图:从图中可以看到,输入源与采样引脚之间存在阻抗RAIN,流入引脚的电压可能因为阻抗的存在产生一定的压降,导致最终输入采样引脚的电压变小。CADC采样电容通过RADC电阻为其充电,如果RAIN的阻抗选取不合理的话,会导致保持电容充满电所需要的时间变长。一般而言,RC的充电的时间常量为:tc =(RADC+RAIN)× CADC当采样时间 <
    嵌入式之入坑笔记 2025-05-20 22:19 119浏览
  • 技术酷炫不敌交付落地:割草机器人市场的冷启动困局Robo Lab重构机器「看见世界」的方式。用硬核科普+实战案例,拆解光束背后的科技革命。一个明星项目的快速沉浮割草机器人,作为户外服务机器人领域的一颗新星,近年来吸引了大量资本和技术团队的目光。随着欧美家庭庭院经济逐步发展,这一细分市场在全球快速崛起,不少创业公司试图通过技术创新颠覆传统园艺维护方式。市场需求有目共睹,但其技术难度、使用场景复杂性、渠道构建门槛,也远非室内服务机器人可比。森合创新正是在这样的产业风口中诞生。公司由云鲸早期核心成员创
    robolab 2025-05-21 13:45 130浏览
  •  在刚刚过去的这个周末,一则关于“娃哈哈纯净水的生产商竟然是今麦郎?”消息在网络上掀起了轩然大波,引发了公众的广泛关注。作为国民老牌子的娃哈哈,这次真的摊上事了。这一事件不仅暴露了娃哈哈在供应链管理上的潜在问题,也引发了消费者对于品牌信任的深度思考。在当下激烈的市场竞争环境中,一个小小的代工风波,为何能引发如此巨大的反响?这背后又折射出了娃哈哈怎样的发展困境?代工风波:合作背后的质量隐忧事情起于消费者发现瓶身上的“今麦郎代工”字样。要知道,在大家印象里,娃哈哈纯净水就该是自家工厂生产的
    疯人评 2025-05-20 18:04 108浏览
  • 在智能座舱感知系统(如 DMS、OMS、安全带识别、儿童遗留检测等)逐渐从研发进入大规模部署的阶段,数据成为模型性能提升的核心瓶颈。尤其在现实采集成本高、隐私受限、长尾样本稀缺的前提下,越来越多客户将目光投向了“舱内合成数据”。在与算法供应商和主机厂诸多客户的交流过程中,我们也观察到三个始终被反复提出的核心问题,本文为大家详细揭秘:一、模态是否丰富,能否覆盖多任务模型需求?相较于传统车外感知任务,舱内感知往往涉及多种任务并发:(1)驾驶员状态监测(DMS)需提供 RGB、NIR、深度图、红外热图
    康谋 2025-05-21 10:14 129浏览
  •   在数字技术重塑商业格局的当下,品牌如何借助创新工具实现价值跃升成为企业战略核心。软件开发已从单纯的技术迭代载体,演变为企业连接用户、驱动增长的关键纽带。因此,筛选靠谱的软件开发公司,成为企业数字化转型的重要决策 —— 专业公司凭借技术积累与行业经验定制解决方案,权威公司则以规范服务与交付能力保障项目落地。   筛选靠谱软件开发公司的三大核心标准   标准 1:技术适配性与行业匹配度   技术适配性:优先选择掌握云计算、AI 集成、低代码开发等前沿技术的团队。   行业匹配度:医疗
    华盛恒辉l58ll334744 2025-05-20 15:46 124浏览
  • 文/陈昊编辑/cc孙聪颖‍在家电赛道上,海尔智家的业绩表现不俗。2025一季度,海尔智家延续了年报稳健增长的趋势,继续在高基数下实现高增长。而在业绩之外,近些年ESG也成为资本市场衡量企业价值的另一道标尺。5月16日,《财富》2025年中国ESG影响力榜揭晓,共有100家企业上榜。其中,海尔智家再次上榜,且连续四年位居行业榜首。“每一环都是绿色的”改变用户生活看似宽泛的ESG概念,如何落地?一起来看看海尔智家怎么做的就知道了。海尔智家通过“6-Green”战略,让采购、设计、制造、回收处置等环环
    华尔街科技眼 2025-05-20 20:18 179浏览
  • 在刚刚过去的这个周末,一则关于“娃哈哈纯净水的生产商竟然是今麦郎?”消息在网络上掀起了轩然大波,引发了公众的广泛关注。作为国民老牌子的娃哈哈,这次真的摊上事了。这一事件不仅暴露了娃哈哈在供应链管理上的潜在问题,也引发了消费者对于品牌信任的深度思考。在当下激烈的市场竞争环境中,一个小小的代工风波,为何能引发如此巨大的反响?这背后又折射出了娃哈哈怎样的发展困境?代工风波:合作背后的质量隐忧事情起于消费者发现瓶身上的“今麦郎代工”字样。要知道,在大家印象里,娃哈哈纯净水就该是自家工厂生产的。5月15日
    疯人评 2025-05-20 16:19 88浏览
  • 汽车诞生百余年来,车灯设计始终在功能性、美学表达与工程可行性之间艰难平衡。从早期的钨丝灯泡到如今的LED、动态大灯,每一次突破都在试图回答:光能否摆脱“容器”的束缚,回归自由的本性?散热结构、封装厚度、刚性电路板——这些工程条条框框,迫使设计师在“形态服从功能”的框架中反复妥协:流线光带被切割成规整的几何模块,曲面幻想坍缩为一道道扁平切口……灯光是汽车个性的灵魂。艾迈斯欧司朗ALIYOS™ LED-on-foil技术,让汽车照明设计拥有自由,彻底颠覆了业界对刹车灯、转向灯或内饰灯等灯饰的传统想象
    艾迈斯欧司朗 2025-05-21 15:27 129浏览
  • 北京贞光科技作为三星电机一级代理商,提供全面升级的技术支持、样品供应和供应链保障服务,为客户提供专业、可靠的一站式解决方案,满足AI基础设施不断发展的需求,支持更高效、更强大的人工智能应用计算系统的开发。如需更多产品信息或技术支持,请联系贞光科技。三星电子在被动元件技术领域取得重大突破,推出专为AI服务器应用设计的超小型高容量多层陶瓷电容器(MLCC)。这些新组件解决了现代AI计算基础设施不断增长的电力需求,同时优化了密集服务器环境中的空间利用率。 满足AI服务器电力需求现代AI服务器
    贞光科技 2025-05-20 11:38 122浏览
  • 机器人革命:下一个工业帝国将由谁定义?摘 要工业机器人是机器人产业的最大子赛道,占据全球及中国市场主导地位。2021年全球市场中工业机器人占比43%,中国市场占比53%。工业机器人主要用于搬运、焊接、喷涂等生产场景。当前工业机器人正从效率工具向智能中枢升级,全球工业机器人市场从粗放式扩张转向技术密集型发展,2018-2022年市场规模波动增长,2024-2028年预计年均增速8.2%。中国市场份额持续增长,主导地位强化。搬运机器人是中国工业机器人市场最大需求,占比55%。未来三年,工业机器人应用
    robolab 2025-05-21 13:24 156浏览
  • 文/Leon编辑/cc孙聪颖‍“韬光养晦、后发制人”,腾讯2025年第一季度的业绩表现可以具象化为以上8个字。在AI整体赋能的情况下,腾讯控股(00700.HK)Q1营收达到了1800.2亿元,同比增长13%,相当于日入20亿;净利润478.21亿元,同比增长14%,每天净赚5.3亿。营收、净利双位数双增长,代表腾讯重回扩张周期。毫无疑问,腾讯的业绩表现释放了一个信号:AI不是单打独斗的业务线,而是生产力工具。谁能高效地部署AI、找到最契合旗下业务的赋能方式,谁就能占尽先机。值得一提的是,与腾讯
    华尔街科技眼 2025-05-20 20:14 112浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦