吉林大学李路团队:氨的可持续合成,从哈伯法到创新催化策略的转变

果壳硬科技 2024-04-16 14:00

欢迎星标 果壳硬科技

氨是一种关键的化学原料和潜在的氢能载体,其高效合成是其利用的关键步骤。追求“绿色氨”生产,取代集中式、高能耗、重环境污染的Haber-Bosch工艺,在较温和的条件下使用可再生能源,是人类可持续发展的前沿技术和关键目标。近年来,氨合成方法的创新,如光化学、电化学和低温等离子体,以及新的催化剂如电子化合物、氢化物、稀土氮化物等,大大扩大了氨合成研究的深度和范围。


氨的气相合成与应用


吉林大学李路团队总结了以N2、H2为原料的气-固相氨合成过程的最新进展和挑战:包括低温热催化合成氨、光催化和光热催化合成氨以及等离子体催化合成氨。气-固相合成氨不仅能实现绿色氢的有效利用,而且为其储存和运输提供了一个可行的解决方案。


作者综述了最近开发的先进的多相催化剂和外场驱动在合成氨过程中的作用方式,确定了催化剂设计和外场刺激的协同作用规律,为克服传统氨合成中固有的热力学和动力学限制提供深刻的见解。在回顾了已经取得的阶段性成果后,作者从理论和实际应用的多个角度突出TRL和挑战,并展望了未来的工业应用前景,旨在给读者提供较为系统和科学的合成氨研究思路,促进向“绿色氨”生产的转变。


相关工作以“Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies”为题在ChemSusChem上发表论文。需要注意的是,由于催化机理和反应途径的差异,对液相光催化和电催化固氮的研究超出了本综述的范围。



热催化合成氨


在过去的一个世纪里,热催化氨合成的研究主要集中在降低Haber-Bosch(H-B)工艺的温度和压力上。N2分子的化学稳定性源于其较强的N≡N键能(945.33 kJ/mol)和较低的电子亲和性(-1.9 eV)。因此,在热驱动的催化过程中打破N≡N键通常需要苛刻的反应条件。根据Sabatier原理,理想的催化剂应该以中等强度吸附反应物(或中间产物):强度足以激活反应物,但又不至于阻碍产物解吸。由于吸附在过渡金属表面的 NHx(x = 0、1、2)物种的吸附能EN与反应过渡态能垒EN-N之间的线性制约关系(即Brønsted-Evans-Polanyi关系),大大限制了过渡金属氨合成催化剂的发展。


为了规避合成氨反应线性制约关系实现低温低压温和条件下合成氨的常用策略可以总结如下: 

(1)通过将电子传递给过渡金属, 反馈到N2的π*反键轨道, 从而加快N2的解离吸附。

(2)通过在催化体系中引入第二个非过渡金属组分(碱/碱土金属氢化物),使部分或所有中间物种吸附在非过渡金属的活性中心上。

(3)结合Mars-van Krevelen机制,构建易于吸附并激活N2的氮空位载体和用于产生氢原子的过渡金属双位点协同催化剂,使用不同的位点激活两种反应物,能长时间高效率催化N2和H2反应产NH3,有效地避免了产物在过渡金属位点难脱附的弊端。


热催化氨合成反应的机理理解和催化剂设计


尽管如此,目前研究中的各种不同类型的温和条件合成氨催化剂并没有进行进一步的扩大化实验,没有在高空速和压力的工业生产条件下进行稳定性与催化速率的研究。新兴催化剂的生产工艺与生产成本也较复杂与高昂,为了实现更温和条件下的固氮反应,在设计过程中需要更加注重催化剂的可放大性与实际生产的相关性。


光催化与光热催化合成氨


光催化和光热催化合成氨能利用来源广泛的太阳能激活惰性N2分子,从而为在环境条件下合成氨提供了理想途径。在光照条件下,半导体光催化剂受外部刺激,产生光激发电子-空穴对。电子跃迁到导带,而空穴则留在价带。光生电子具有还原能力,通过光催化剂表面的催化活性中心(如金属或阴离子空位)进入表面吸附的 N2 的反键 π* 轨道,从而还原和活化N2分子。


与高温多相催化中的传统解离途径不同,光催化合成氨通常被认为是一种低能耗的缔合途径。在这种缔合途径中,吸附的N2最初部分氢化,产生 N=NH 中间体。该中间体继续接受电子和质子,导致 N≡N 键断裂,逐步还原成 NH3。这一过程可以通过远端机制或交替机制进行,具体取决于质子和电子的反应顺序以及催化剂表面的化学环境。理想的光催化剂应能最大限度地利用入射太阳光产生高能光电子,并建立高效的电子传递通道,从而促进催化剂与表面吸附的 N2 分子之间的快速光激发电子传递。


光催化氨合成反应的机理理解和催化剂设计


光(热)催化氨合成过程的能源可以完全来自于太阳光,反应条件温和,具有很大潜力,但制约其实现规模化生产的主要原因是反应速率过低,光能到化学能的转换效率低。究其光化学反应本质,生产过程的时间敏感性强,受到昼夜交替的影响。


为了解决其生产效率低的问题不仅需要从催化剂的设计角度,设计高效廉价的光催化剂,还需要在反应器设计以及光源上进行多角度的研究。除提升催化剂本征反应活性之外,提升技术成熟度,开发更高效的反应器也是重要研究方面。可以通过菲涅尔透镜等聚光手段将来自太阳的光能增强到完成反应的光强。其时间敏感性可以通过研究更高效的人工光源改进,将研究中最常使用的Xe灯替换为更加廉价,更便于大规模制造的LED光源。


等离子体催化合成氨


等离子体是物质存在的第四种状态,由电子、各种离子、分子和激发态物种组成。通过对气体施加能量而产生的,产生方式包括火花放电、电晕放电、介质阻挡放电和微波放电等。等离子体催化氨合成过程中,气相存在高能电子,可通过碰撞产生活性物种以超过传统热催化的速率参与到表面化学反应过程中,从而克服反应动力学限制,使催化反应在更温和的条件下进行。


近年来等离子体催化氨合成的研究已经从探索性和试错的方法转变为基于实验和建模工作的更具体的理解。等离子体合成氨的理论能源成本为0.25 MJ/mol NH3(热催化0.48 MJ/mol NH3),这说明了在小型工厂中,通过可再生能源以低成本高效生产氨的潜力。


等离子体催化氨合成反应的机理理解


在目前的研究背景下,根据等离子体条件和所选择的催化剂材料,会导致不同的等离子体活性物质,并影响催化反应的进程,我们在设计催化剂时可以参考的策略如下:


(1)在具有低解离程度和高激发程度(振动或电子)的等离子体中,等离子体活化的作用是降低受解离吸附限制的过程的工作温度。在大多数情况下,负载Co、Ni和Rh催化剂在测试催化剂中应用最多。这类金属比热催化氨合成的经典Fe和Ru催化剂具有更少的氨脱附限制。催化剂的粒径和孔隙度方面的物理状态会影响吸附概率,也可能通过改变放电性能来增加转化率。等离子体增加金属在载体上的分散的能力也将提高催化性能和改变放电的性质。


(2)在解离程度较高的等离子体中,理想的催化剂通常与热催化中使用的催化剂有很大的不同。等离子体产生的自由基不需要在表面上解离,因为解离已经在等离子体中发生了。采用铁电材料的球团填充电极间间隙可以大幅降低工作电压,从而提高该过程的整体能源效率。然而,在这种情况下使用传统的催化剂会导致产物氨气的分解,利用分子筛或易结合氨气的材料及时将产物收集起来,有利于促进反应正向进行,提高整体催化速率。


等离子体催化氨合成反应的催化剂和反应器设计


由于等离子体催化体系中包含了高能电子、活性分子和自由基等复杂成分,导致等离子体催化合成氨的机理解释挑战性极大,其理论基础研究还需要进一步加强。除此之外,产生稳定的等离子体在目前的技术水平仍需要消耗较多电能,真正将非热等离子体催化大规模应用于合成氨需要对电能转化有更高的要求,发展如脉冲放电等更高效的等离子体电源是很关键的技术研究,设计特殊的催化剂微观结构将放电集中在催化剂和气体直接接触的界面是另一个有待发展的研究领域,在未来通过工艺和技术优化达到低能耗产氨的目标十分值得期待。


总结与展望


氨合成的未来发展轨迹将取决于对可持续发展和环境因素的追求。等离子催化和光(热)催化等新兴技术因其在更温和的条件下促进氨合成的潜力而备受关注,从而有望显著减少能源足迹。然而,前进的道路上并非没有挑战。这些新技术的工业可扩展性需求,以及对能源效率的必要改进仍然是关键的障碍。责任在于继续开展研究,致力于完善催化剂设计、阐明反应机制和优化系统配置。正是在应对这些挑战的过程中,合成氨技术的未来才有可能取得最具变革性的进展,并预示着一个可持续和高效的合成氨生产时代的到来。


研究团队1

(请上下滑动查看)

通讯作者 母晓玮:2022年在吉林大学无机合成与制备化学国家重点实验室获得博士学位。现为中国科学院长春应用化学研究所博士后研究员。主要研究方向包括纳米催化材料和惰性小分子催化。


通讯作者 李路:吉林大学化学学院,无机合成与制备化学国家重点实验室,唐敖庆卓越教授(A岗)、博士生导师,国家“万人计划”领军人才,国家级“四青”人才。2006年和2012年分别获吉林大学学士和博士学位。2013-2017年在加拿大麦吉尔大学从事博士后研究。主要研究方向包括惰性小分子(如CH4、N2和烷烃)的光驱动活化和低碳转化技术,及热催化氨合成及分解转化技术。在Nat. Energy,Nat. Protocols,Nat. Commun.,Chem,J. Am. Chem. Soc.,Angew. Chem. Int. Ed. 等国际著名学术期刊发表论文60余篇。


第一作者 李嘉阳:2020年获得吉林大学化学学士学位,目前是吉林大学无机合成与制备化学国家重点实验室的博士研究生。主要研究方向为非热等离子体催化合成氨。


第一作者 熊晴川:2022年获得吉林大学化学学士学位,目前是吉林大学无机合成与制备化学国家重点实验室的博士研究生。主要研究方向为光热催化合成氨。

论文信息

发布期刊 ChemSusChem

发布时间 2024年3月12日

文章标题 Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies

(https://doi.org/10.1002/cssc.202301775)


如果你是投资人、创业团队成员或科研工作者,对果壳硬科技组织的闭门会或其它科创服务活动感兴趣,欢迎扫描下方二维码,或在微信公众号后台回复“企业微信”添加我们的活动服务助手,我们将通过该渠道组织活动——


果壳硬科技 果壳旗下硬科技服务品牌,致力于连接科学家与投资人、创业者,在新一轮技术革命和资本流动中,做最懂硬核科技的团队。
评论 (0)
  • 差分对等长约束问题处理概述 最近需要修改电路板,进行差分对等长处理的时候,之前加的差分对约束出现问题,具体如图1所示,差分对F2CLK的F2CLK_N网络重复囊括了两端IC到电阻R85线段,而不是象P端那样只是两个IC两个PIN直接的线段。图1:差分对某个分支出现“重复”线段 造成这个问题的原因是分析的时候认为R85的模型为IC,而不是分离阻容。解决该问题的方法有很多,这里给出两种。解决方法一 在Allegro的PCB Editor的Analyze菜单下选择Model Assignment...
    coyoo 2024-05-20 14:30 97浏览
  • 在电动汽车的心脏部位,电池管理系统(Battery Management System, BMS)扮演着至关重要的角色。它不仅保障电池的安全、稳定运行,还直接影响到整车的性能表现和使用寿命。在电动汽车行业,电池健康管理(Battery Health Management, BHM)系统是确保电池性能、安全和寿命的关键技术,埃安汽车作为新能源汽车领域的佼佼者,其电池健康管理系统关键数据和技术也备受关注。 首先,让我们从埃安BMS的技术特点谈起。埃安BMS系统以其创新的多维度管理策略而著称
    lauguo2013 2024-05-20 15:32 75浏览
  • 小度在家智能屏X6多功能智能音箱,具有5.45英寸的智能屏幕和200万像素的摄像头,支持语音控制和手势控制。整机实拍内部结构可以看到X6整体结构分为前后壳,前壳部分包括5.45寸的LCD和TP。后壳部分主要固定了主板部分、MIC+按键小板、供电接口小板、摄像头模组、音腔SPK等。主板部分使用了一片整体式的散热铝片,用于对CPU散热及固定,CPU与散热器之间通过导热硅片连接。拆除散热片后可以看到,X6主板所用到的物料全览。X6主板使用到的A类物料清单(不包含DDR):MarkingDescript
    小满24 2024-05-20 15:50 92浏览
  •     IEC 60747 标准针对半导体分立器件和半导体传感器,规范了电气特性参数和测量方法。该标准包含以下分册。    /-1 通则    /-2 二极管        整流二极管        雪崩效应整流二极管        快恢复整流二极管        肖特基结二极管
    电子知识打边炉 2024-05-21 10:44 49浏览
  • 近日,飞凌嵌入式在FETMX6ULL-S核心板上率先适配了OpenHarmony 4.1,这也是业内的首个应用案例,嵌入式核心板与OpenHarmony操作系统的结合与应用,将进一步推动千行百业的数智化进程。飞凌嵌入式FETMX6ULL-S核心板基于NXP i.MX 6ULL处理器开发设计,搭配ARM Cortex-A7内核,主频800MHz,确保了卓越的运算性能,并且,先进的电源管理架构也可以带来更低的功耗控制。而刚刚推出的OpenHarmony 4.1系统,在应用开发方面展现了全新的开放能力
    飞凌嵌入式 2024-05-21 08:43 64浏览
  • 1. bluez官网:www.bluez.org/profiles/2. bluez移植指导:https://wiki.beyondlogic.org/index.php?title=Cross_Compiling_BlueZ_Bluetooth_tools_for_ARM3. bluez入门教程:https://blog.51cto.com/u_11626714/49699574. bluez蓝牙配置相关的文章(架构、工具、移植、API应用等):https://blog.csdn.net/mo
    蓝牙菜鸟 2024-05-20 19:45 35浏览
  • 1. mesh介绍:http://doc.iotxx.com/BLE-Mesh%E6%8A%80%E6%9C%AF%E6%8F%AD%E7%A7%982. mesh协议分析:参考a.  https://blog.csdn.net/zhoutaopower/category_9083143.html参考b.  https://blog.csdn.net/wang_yunpeng/category_9665374.html3. mesh 1.1全新功能介绍:a.&nbs
    蓝牙菜鸟 2024-05-20 20:00 58浏览
  • 柔性电路板在具有轻薄、柔软的同时,也失去了刚性的性能,那么为了使产品指定部位增加一定的厚度和刚性,以便于客户的后续安装或装配,我们就需要在这些位置贴上一块刚性的板材,即补强板。FR4(玻纤布+树脂)是柔性电路板常见的补强方式之一,一般应用于平整度要求不高的贴片元件背面,或插件焊接的元件引脚周围,起支撑元器件或增加FPC局部厚度,方便组装。嘉立创FR4补强支持0.1mm,0.2mm,0.4mm,0.6mm,0.8mm,1.0mm,1.2mm,1.6mm共8种规格。之前只有0.1mm和0.2mm的厚
    嘉立创FPC 2024-05-20 13:52 54浏览
  • 本文来自慧博咨询,文中引用资料来自多份最新研报等材料,因此数据较新,且梳理了多条MEMS产线、多家MEMS企业最新状况信息,能全面向我们展示当前的中国及全球MEMS市场环境。MEMS,即微机电系统,是在微电子技术(半导体制造技术)基础上发展起来的,融合了光刻、腐蚀、薄膜、LIGA、硅微加工、非硅微加工和精密机械加工等技术制作的高科技电子机械器件。MEMS 应用范围广阔,消费电子、 汽车、工业是MEMS 行业最大的三个细分市场,市场规模较为可观。围绕MEMS,下面我们从其基本概念入手,了解其特点、
    传感器专家网 2024-05-20 21:16 67浏览
  • 金手指专业名词为板边连接器,一般由一排或两排金黄色的导电触片组成,因其焊盘表面为沉金或镀金工艺,且导电触片排列如手指状,所以俗称“金手指”。金的抗氧化性极强,可以保护内部电路不受腐蚀,而且导电导性极好,可以减少信号损失,同时也具有非常强的延展性在适当的压力下可以让触点间接触面积更大,从而降低接触电阻提高信号传递效率。FPC金手指常用于排线类产品,如ZIF连接器等,这类金手指也称为插拔金手指。FPC金手指处的厚度需要与连接器座子的厚度匹配,太薄了会导致接触不良,甚至脱落,太厚了也会无法插入到座子里
    嘉立创FPC 2024-05-20 11:44 85浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦