基于FPGA的AES256光纤加密设计

FPGA技术江湖 2024-05-10 07:07

大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。


概述


 
近年来,信息安全应用于生活中的各个领域.在光通信系统中,往往对速率有着较高的追求。其中对光模块,光纤通信中的传输算法,传输的模式以及光波段选取有密切关联。传统的光通信系统在于保证传输带宽和吞吐量而并未考虑到对信息安全的保护。随着对带宽,速率等要求日益增加,高速通信已经成为基本的要求。光纤通信因其具有低损耗,高抗干扰性,从而广泛得到应用。近几年由于大量用户数据的泄露,造成了极大的损失,使得信息安全成为人们关注的焦点。
目前光纤加密的研究多采用量子加密的方法,本人在中科大量子物理实验室下属机构问天量子实习发现,目前国内外在实际工程上存在很多漏洞,无法做到光纤通信中的绝对安全,实现军用和民用任重道远。华为传输加密解决方案,采用L1层加密技术,对业务层透明,采用高强度的美学256算法,确保各行业的数据安全性。此方案虽然实现简单,但缺点是吞吐量小、端口少、速率低。
对于AES算法的硬件实现,国内外研究学者大部分是基于FPGA的硬件实现。解放军理工大学的吕游等人研究高级加密标准俄歇算法的设计原理,并通过加密部分和密钥拓展共用 S 盒以减少资源占用,然后在FPGA上完成加密部分的优化实现,其加密模块的最大吞吐率可达到1.326 Gbit/s,消耗1507个1 BLM=1 LE=0.5 Slice)。埃及开罗德国大学的Mazen ei Maraghi,Salma Hesham等人研究速度与面积优化的俄歇算法的FPGA实现,利用循环迭代的方法减少逻辑资源的消耗,在FPGA芯片Xilinx Virtex 5 XC5VLX 50上实现,使用了 303个可编程逻辑单元(切片)、加密速度为1.33 Gbit/s...通过分析国内外ASE在硬件上实现的研究现状,我们想要用FPGA硬件实现,达到5 Gbps的传输速率,这是完全可行的。
 

主要创新点



1. AES加密算法在上的实现
最常用的数据加密方式是软件加密,即在通用微处理器上编程实现,但其加密速度普遍不高,算法实现的效率较低,安全性和可靠性有限,很多时候不能满足用户的需求。因此,需要更加快速,更加安全可靠的加密实现方式来满足人们在一些场合下的数据保密要求。
由于我们传输的速率达到5 Gbps、这种GTP高速接口下若使用FPGA+ARM架构(如Zynq)、通过手臂完成加密算法将会使得我们效率大大降低,因此串行通信实现俄歇加密算法已经不能满足我们的需求,故我们采用纯PlFPGA设计来实现加密算法。FPGA设计加密算法具有安全性高,加密速度快,开发周期短,开发成本较低,可重配,可靠性高以及移植性好等优点。

2. AES算法在光纤链路上的算法移植
算法移植通常是通过成熟的库函数进行调用,该串行方式下一个时钟周期只能完成一条指令的实现,算法移植相对简单,不会出现异步跨时钟域处理高速数据等问题.我们选择纯Pl端完成算法移植,在一个时钟周期下,既要完成算法的数据输出,也要考虑到此刻光纤链路中传输状态。因此我们的效率虽然大大提升,但对我们的设计是一个巨大的挑战。
针对速率匹配,数据对接,缓冲设计等问题,我们分别进行了模块化设计,分别对其进行仿真和上板测试。在软件调试部分有详细的分析和设计介绍。证明我们的算法移植是成功的。

3.针对AES算法在光纤发送端进行特定的帧定制
在算法移植过程中,我们针对俄歇算法对光纤协议进行了帧定制。传统的帧传输是对数据流进行传输,对固定长度的数据流加上帧头帧尾进行判断。一旦丢包,整个帧全部丢弃,造成了极大的浪费。
我们对原始的这种光纤帧协议进行了定制,在原来每一帧的基础上,内部对其封装了四个子帧,每一个子帧由128位组成(原因是我们每次加密的数据是128位)。对于每一个子帧,帧头为起始的16位数据,具有和其他112位数据不一样的脉宽长度,便于后续的帧解析。
通过我们的设计,即使传输过程中丢包,只会影响该当次的128位数据,且该设计给我们帧解析,加密算法的解码提供了便利的平台。

4.接收端对帧数据恢复
光纤接收端设计部分除了会面临数据流缓冲,高速率通信中异步跨时钟域处理等问题,还要剥离原始子帧结构,并且去除光纤本身的帧头帧尾。除了我们的加密数据,奥罗拉协议本身还会不定期发送一些无效数据,我们要对其进行数据恢复,并且拼接光纤链路中的16位数据,封装成一个个的128位加密数据.这也是我们设计的一大难点

5.高速通信中时序约束和信号完整性分析
对于GTP高速接口,我们对其做时序约束是非常有必要的。除此之外,还要要用专业的软件对光口进行测速,并对其信号质量进行分析和评估。
我们使用Seiral I/O分析仪连接到艾伯特核,验证高速串行通道的状态.从眼图上可以观察出码间串扰和噪声的影响较小,数字信号整体的特征良好,从而判断出系统具有非常良好的性能。
作品的难点与创新点部分设计,将会在第四部分(软件设计与流程)中详细的阐述。

系统架构



1.AES加密算法
俄歇算法属于对称密码体制中的一种分组密码,有AES-128、192 和 256 三种密钥长度。以AES-256算法为例,算法的分组长度是256 位,密钥长度同样是256 位,在分组或密钥长度不足256位时,需按照相应的补位规则补足256位。
在算法中有多轮的重复的变换称为轮变换,轮变换有三种类型,分别为初始轮、重复轮和最终轮.每一轮中又包括:字节代换、行移位、列混合和子密钥加几个步骤,而最终轮没有列混合这一步骤。这几个步骤的大致过程如下,如图3-1。
图3-1:俄歇加解密过程

如图3-2和图3-3所示所示为S盒,逆S盒。字节代换是通过字节代换表(S)盒)对数据矩阵进行非线性代换,行移位是以字节为单位对数据矩阵进行有序的循环移位,列混合是将列混合矩阵与数据矩阵进行一种矩阵乘法运算,子密钥加是将数据矩阵与子密钥矩阵进行按位的异或运算,子密钥按照特定的密钥扩展方法生成。由于属于对称密码体制,算法的解密即为加密的逆运算。
图3-2:S盒构造

图3-3:逆S盒构造
 
2.AES加密算法在硬件上的优化
2.1字节替换与行位移
俄歇算法迭代的过程中第一步就是进行字节替代,它属于非线性变换.按照它的替换规则,输入A对应唯一的输出B、这中间的运算过程如果用硬件组合逻辑实现的话,会浪费大量的逻辑资源,而且也需要一定运算的时间。既然输入和输出一一对应,输入为8位字节,那么输出最多也就256种情况,而且对应规则也知道,所以我们可以先用其他软件,如MATLAB计算出输入和输出的置换表:输入的低四位对应列地址,高四位对用行地址的16*16的置换表.这样通过输入的8位二进制数可以快速查找到对应的8位二进制数。相应的在解密的过程中,也可以用置换表的方式完成逆字节的替换。这种优化方法可以减少逻辑资源的消耗,也提高了运算速度。
按照AES算法,进行完字节替换后,紧接着是行位移.但是我们可以在进行字节替换时同时进行行变换,如输入A矩阵的第3行,即第5、8、10、15字节,对应输出新的矩阵B的第8、5、15、10字节,这样就可以同时完成字节替换和行位移,节省时间和资源。
 
2.2列混淆
完成字节替换和行位移后进行列混淆,列混淆就是通过输入矩阵的列重新加权再组合形成新的输出矩阵。在这个计算过程中,加法运算等价于异或运算,乘法可以进行优化。乘法运算则需要分为两种情况考虑:如果8位二进制数BIJ最高位为1、与02做乘法运算时,需要先左移一位,然后与00011011进行异或运算;如果它的最高位为0、与02做乘法运算时,只需要左移一位。而所有的数都能分解成02不同次幂的和,所以可以做一个02乘法查找表,这样任何一个数都可以通过先分解成02的不同幂和,在通过查找表找到对应的值,这样就完成了乘法的优化。在解密的过程也是一样,通过查找表的方法优化乘法。这样仅用一个查找表的资源完成了多次组合逻辑运算,极大的减少了逻辑资源的消耗。
 
2.3轮迭代内部流水线结构
俄歇算法加密过程包括 10 轮迭代,每轮迭代的组合逻辑模块包括AddRoundkeySubBytes漂流混合柱密钥扩展。前面在每轮迭代之间引入了流水线,但单次轮迭代内部中仍有 3 个组合逻辑模块,为了降低延迟,所以在轮迭代内部引入流水线结构提升加密速度。
我们在加密过程中,加密算法消耗的实际时间为68个时钟周期,以100米晶振为例,一次编码过程仅消耗680 ns,保证了我们实际传输过程中在安全保密的基础上,还能实现高速率通信。
 
2.4极光光纤链路协议
西林公司针对高速数据传输开发了一种轻量级的可定制的链路层协议--奥罗拉协议。协议内部集成了与其相应的GTP收发器,通过连接多个GTP可以实现传输带宽的拓展,同时它也可以被上层的自定义协议或者其他行业标准协议采用。
奥罗拉协议描述了用户数据在Aurora 8B/10B通道(频道)之间的传输过程。一个Aurora 8B/10B通道(频道)包含一个或者多个链路(里)、每个链路都是一个全双工的串行通路。Aurora 8B/10B通道上的通信双方被称为通道对(频道合伙人),如图3-4。
图3-4:奥罗拉链路框架

奥罗拉协议通用数据链路速率在480 Mb/s84.48 Gb/。该协议具有如此强大的功能,究其原因是其内部有一个专用硬核,这个硬核专门用来进行数据的高速传输,并且它的传输方式可以由用户根据实际需求来设置为全双工或者单工。该硬核主要利用GTP收发器来进行数据的传输。
奥罗拉协议主要对物理层接口、初始化和错误处理机制、数据排列、链路层以及流程控制作了定义和要求。其中物理层接口讲述了电气特性和时钟编码等;初始化和错误处理机制则定义了单通道和多通道两种情况下,数据传送之前对通道进行初始化的步骤,同时介绍了在遇到错误代码传输时该如何应对处理的机制。数据排列描述了数据在通过一个通道后,如何在多个串行链路中进行传输。链路层定义了一个用户数据单元如何开始传送以及如何结束传送,同时还描述了在数据传输过程中如何暂停数据流并插入更高优先级数据的过程.除此之外,链路层还提供了当出现接收器和发射器在时钟速率上出现差异问题时该如何解决的方案措施。最后,流程控制则是规定了链路层流程控制机制,以及上层用户流程控制信息的传输机制。
 我们之所以选择奥罗拉协议,放弃了PCIeSRIO 2.0,UDP等协议,考虑到以下一些因素:奥罗拉协议除了可以达到很高传输速率外,在链路数目选择的灵活性,协议的可定制性上,远远超过了上述的协议。由于我们需要用到奥罗拉协议传输加密数据,故冗余信息越少越好,否则对冗余信息加密将造成很大的带宽损失.奥罗拉协议的可定制性主要表现在:
1.可以很方便的使用AXI 4-流进行帧传输/流传输
2.可附加16位的加扰器/解扰器 ;
3.可选16位/32位启联校验 ;
4.支持热拔插(热插拔)等方面。
 
4.硬件电路设计
我们硬件电路设计主要体现在SFP+光口与FPGA板卡之间的设计。如图3-5所示。
图3-5:FPGASFP+连接设计

首先我们介绍所使用的光模块。图3-6所示为我们使用的SFP光口实物图与引脚图。使用的SFP+的光模块支持8B/10B,也可支持64b/66B的长波(1310 nm)的单模光纤(SMF),有效传输距离为2M10公里。事实上最高可达到25公里。光口支持SFP-MSA协议,选用的光模块支持10 GBase-LR/LW
图3-6:SFP+实物图与引脚图

FPGASFP+光口的电路的原理图设计如图3-7所示。
图3-7 :FPGASFP+光口连接图

设计演示


 
艾伯特综合误码率测试仪)是西林提供的用于调试FPGA芯片内高速串行接口的工具。它通过JTAG总线提供了FPGAVivado串行I/O分析仪的通道.通过艾伯特用户可以定制线速率、参考时钟速率、参考时钟来源,总线宽度。它同时还额外需要一个系统时钟,这个时钟可以来自GTX收发器或者其它FPGA管脚。
使用艾伯特进行GTP通道的验证有以下三个步骤:
1.生成艾伯特核:根据硬件高速串行总线的需求来定制和生成伊伯核。
2.使用上一步的艾伯特核自动生成艾伯特参考设计并生成钻头文件。
3.使用Seiral I/O分析仪连接到艾伯特核,并验证高速串行通道的状态。

我们在维瓦多中生成该测试工具,对SFP+光口实际发出的数据进行测速和信号完整性分析。如图5-1所示。我们可以在图的正下方观察到该链路的实际速率为5 Gbps、速率完全满足我们的设计需求;误码率越低,颜色越偏向蓝色(深蓝色);当误码率越高,颜色越偏向红色,眼图张开的大小就代表信号质量的好坏。我们通过观察眼图可以发现,蓝色区域很大,且角度张开合理。结合图5-2,通过5 Gbps速率的光纤传输4.557E10位数据后,误码率仅为2.195E-11,远低于官方规定的误码率1.E-10标准,可以得出结论:信号完整性分析良好,信号质量传输可靠。
图5-1 :二维眼扫描眼图
 

图5-2 :误码率结果图

 
同时我们通过算法在硬件上的优化,可以占用很少的资源到达所需要求,如图5-3和图5-4所示,可以看出很低的资源利用率。
图5-3:发送端资源利用率统计图
 
图5-4:接收端资源利用率统计图

- THE END -

🍁


往期精选 

 
 

【免费】FPGA工程师人才招聘平台

FPGA人才招聘,企业HR,看过来!

系统设计精选 | 基于FPGA的实时图像边缘检测系统设计(附代码)

基于原语的千兆以太网RGMII接口设计

时序分析理论和timequest使用_中文电子版

求职面试 | FPGA或IC面试题最新汇总篇

资料汇总|FPGA软件安装包、书籍、源码、技术文档…(2024.01.06更新)

FPGA就业班,05.04开班,新增课程内容不加价,高薪就业,线上线下同步!

FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注姓名+学校/公司+专业/岗位进群


FPGA技术江湖QQ交流群

备注姓名+学校/公司+专业/岗位进群

FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论 (0)
  • 电脑显示器已逐渐成为现代人时常会接触到的3C产品,能带给消费者愉快的视听娱乐,不管是看电影、追剧、听音乐放松心情,或是玩一场紧张刺激的电竞游戏。忙碌之余,能够偶尔享受闲暇时光,也是一种释放。 您是否也曾遇过,在享受电影或游戏的过程当中,显示器带给我们的影像和声音突然出现不协调的情况呢?这就像是两者间没有互相搭配好,节奏步调变得不一样!这种情况我们称为「影音延迟」或「影音不同步」。 当这类问题持续发生时,无法好好享受电影或者追剧,会让人心情烦躁。对于电竞玩家来说更是硬伤,除了分心、受干扰外,更
    百佳泰测试实验室 2024-06-20 15:55 133浏览
  • ​在为期三天的上海国际嵌入式展会中,树莓派和上海晶珩一起展示了众多的基于树莓派和CODESYS的解决方案,没去过展会现场的小伙伴千万别错过这篇文章!视频地址:https://www.bilibili.com/video/BV1c1421k7ne/?vd_source=a637ced2b66f15709d16fcbaceeb47a9这个基于Raspberry Pi 5的嵌入式系统解决方案集成了16个EtherCAT总线控制的步进电机,旨在实现高性能的多轴运动控制。Raspberry Pi 5作为核
    树莓派开发者 2024-06-21 14:29 128浏览
  • 随着时代的飞速发展,新能源汽车以其绿色环保、能效高等特点在全球范围内迅速普及。然而,伴随着这一进程的不断推进,我们不得不面对一个前所未有的现实——新能源汽车的第一波动力系统已步入了报废的爆发期。积尽六年繁华,不过弹指刹那,2024,标志着新能源汽车生命周期管理的新阶段,对于整个行业乃至社会的影响深远且复杂。新能源汽车的推广始于对传统燃油车引起的环境问题的担忧和对可再生能源利用的追求。经过多年的发展,早期的电动车电池技术已经难以满足当前的需求,电池寿命终结成为用户面临的直接问题。随之而来的,是大量
    lauguo2013 2024-06-20 14:23 102浏览
  • 翻新料指的是通过回收旧的或废弃的电子元器件,经过修整、清洁、测试等过程,使其看起来像是新的元器件,并重新投入市场销售使用的一种元器件。这些翻新料在电子元器件市场中并不少见,但由于其质量和性能无法保证,使用翻新料可能存在一定风险。翻新料的来源回收的旧电子设备:例如废弃的计算机、手机、电器等。生产过程中淘汰的次品:一些在生产过程中被淘汰的次品通过修整再次销售。售后维修过程中更换下来的旧件:如保修或维修拆下的元器件。翻新过程回收:通过各种渠道回收旧的或废弃的电子元器件。清洁:对回收的元器件进行清洁,去
    大鱼芯城 2024-06-20 12:09 175浏览
  • ​Raspberry Pi 已在伦敦证券交易所上市,股票代码为 Raspberry Pi Holdings plc。这是 Raspberry Pi 的分水岭,也是发展新阶段的开始:进入公开市场将使树莓派能够更快地制造出更多我们喜爱的产品。Raspberry Pi 基金会在首次公开募股中筹得的资金将支持其在第二个十年中影响全球的雄心壮志;有关首次公开募股对基金会意味着什么的更多信息,请点击这里查看菲利普的博文。博文地址:https://www.raspberrypi.org/blog/what-w
    树莓派开发者 2024-06-20 15:15 129浏览
  • 1. 版权保护芯片RJGT102介绍为了防止硬件电路与固件被抄袭,核心在于加密芯片和安全解决方案的设计,目前大多MPU并不具备安全防护功能,所以最好的办法是使用一颗专用的加密芯片,通过加密芯片对接MPU,进行认证,授权,保存关键数据等。RJGT102采用了SHA256对称加密算法,256位的大数加密, 加密算法强度高。每片RJGT102都有唯一的客户编码,非常适合做防抄板,防抄软件,管控工厂生产数量,防止方案外泄等。参与SHA256运算的数据为:8字节Key(可动态更换),8
    万象奥科 2024-06-20 17:37 138浏览
  • GPIO的功率、电压和电流取决于具体的GPIO类型和配置。 GPIO(General Purpose Input/Output)通用型输入输出端口,是一种多功能的电子接口,广泛应用于微控制器、微处理器以及各种电子设备中,用于读取或输出信号。理解GPIO的功率、电压和电流的相关特性是进行电子电路设计和编程的基础。这些参数决定了GPIO端口能安全处理的电量,以及它与其他电子组件交互时的兼容性。 从电压角度来看,GPIO端口通常设计有一定的耐压限度,这意味着它们可以安全地在特定的电压范围内工作。例
    丙丁先生 2024-06-21 17:43 167浏览
  • TT电机(直流电机)的功率、电压、电流、瞬间启动电压和电流是其运行的关键参数。这些参数决定了电机的性能和适用场景**。在探讨TT电机的这些特性时,需要综合考虑其电气特性以及启动和运行条件。以下将逐一解析这些关键参数: 1. 功率:    - TT电机的功率通常取决于其设计和应用场景。例如,普通TT电机的额定功率可以在几瓦到几十瓦不等[^4^]。    - 对于不同的TT电机型号,如370电机和310电机,它们的功率输出也会有所不同。例如,370电机通常适
    丙丁先生 2024-06-21 17:18 153浏览
  • 随着汽车电子技术的发展,车辆上配备了越来越多的电子装置,这些设备多采用点对点的方式通信,这也导致了车内存在庞大的线束。造成汽车制造和安装的困难并进一步降低汽车的配置空间。因此,汽车总线逐步开始向网络化方向发展。在此背景下,CAN(Controller Area Network)总线应运而生,以其高可靠性和灵活性,成为汽车通信系统中不可或缺的一部分,承载着车辆控制、监控和诊断等关键任务。一、技术演进:从CAN到CAN FD随着技术的持续发展,传统的CAN总线在数据传输速率和带宽上逐渐显现出局限性。
    康谋 2024-06-20 13:55 92浏览
  • Matter是连接标准联盟(CSA)所推出的统一连接标准,旨在让不同品牌的智能装置可以互通互联。并且支持包含Wi-Fi、Ethernet、Thread和Bluetooth等多种连接协议。 随着Matter被广泛运用于智能家居生态圈,目前Apple Homekit、Amazon Alexa、Google Home和Samsung SmartThings等智能语音助理都已支持Matter。然而,要是网络服务供货商的网络突然断线了,家里的智能装置是否还能正常操作?还是必需连接到外部网络才能控制智能装
    百佳泰测试实验室 2024-06-20 15:40 134浏览
  • 随着科技的进步不断更迭,电子设备的传输速度越来越快,时至今日对于高速传输带宽的要求也愈来愈高。印刷电路板(PCB,以下简称PCB) 在高速传输接口中扮演不可或缺的角色,其高频特性直接影响了整体传输效能。高频特性是指PCB在高频率下的电气性能,包括阻抗、插入损耗、回波损耗、群延迟等。这些参数会影响信号的传输速度、完整性和可靠性。 PCB潜在风险 你知道吗?如果PCB的高频特性不佳时,可能会导致以下问题: 信号传输速度变慢信号衰减增加信号反射增加信号失真 这些问题都会影响电子设备的性能,甚至
    百佳泰测试实验室 2024-06-20 16:05 159浏览
  • 在汽车的复杂电路网络中,仪表网关扮演着信息枢纽的角色。对于驾校使用大众朗逸车主而言,了解仪表网关的位置不仅有助于日常维护,更是故障诊断和车辆升级的关键所在。大众朗逸作为一款深受消费者喜爱的车型,凭借其稳定的性能和经济的油耗赢得了广泛的市场认可。然而,即便是这样一款优秀的车型,在驾校使用过程中也难免会遇到一些技术问题,这时候对仪表网关的了解就显得尤为重要。18年后的大众,网关都是标配,直接从OBD通过CAN监听是没有数据报文对外发出的,不是没有,而是避开诊断请求,这个后边说。朗逸CAN总线技术的引
    lauguo2013 2024-06-21 08:18 155浏览
  • 反激电源包含原边反激何副边反激,原边反馈动态响应比副边反馈慢,但是相对成本低,无论是原边反馈还是副边反馈由于反激电源电路简单,成本低广泛的用在在电动两轮车Escooter,电动工具,打印机,清洁电器等充电场景,也广泛的应用在电表,家电,新能源等场景作为辅助电源给芯片供电,下面就以无锡明芯微的MX1210E作为例子详细的介绍下一款24v2.5A的一个方案,从该方案来看输入口有NTC防止过流,采用10D561K 的压敏作输入过压保护,有个滤波的0.47uF的X电容并采用分压电阻做X电容放电,串联差模
    王萌 2024-06-21 09:27 304浏览
  • 站上风口,交付量狂飙,装机量翻番……是什么让LiDAR再次“翻红”? 一波三折。如果要用一个词形容近两年的激光雷达市场,恐怕它最为合适。人类纪元,2022年。开启量产元年的车载激光雷达,一度风光无限。当时OEM厂商对激光雷达关键指标提升的需求仿佛“军备竞赛”。加速批量上车,进一步控制成本,将其控制在500美元左右……那一年,产业链上下游众志成城,万众一心。转眼到了2023年,车企在面向ADAS和自动驾驶的感知技术上逐渐分化成两派,纯视觉路线的落地以及价格战带来的降本压力,让很多车企出现
    艾迈斯欧司朗 2024-06-21 17:10 157浏览
  •  经过近几年的618大促之后,如今的618已经被默认的低价竞争给包围了。随着低价竞争的持续蔓延,曾经积极参与其中的一些品牌商,态度也从积极转为消极;各种被“忽悠”的消费者,也在想着法逃离电商平台设置的套路。与此同时,不甘心被大主播绑架的电商平台,与胃口不断加大的头部主播,开始展开极限拉扯。以往热闹的618,如今变成了各路参与者的围城,渴望进去的不停向里面张望,渴望出来的则变着法地希望,跳出618这个牢笼。虚假繁荣背后的暗流涌动在直播电商红利之下,抖音、淘宝、京东、唯品会等各路平台,在直
    刘旷 2024-06-21 09:58 159浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦