产业丨国内政策的监管和推动,自动驾驶找到规模化发展路径

原创 AI芯天下 2024-05-30 20:30

·聚焦:人工智能、芯片等行业

欢迎各位客官关注、转发






前言

国内政策的监管和推动为自动驾驶的规模化发展提供了清晰的路径和目标,通过顶层设计和地方实施相结合的方式,促进了无人驾驶汽车行业的健康发展。



作者 | 方文三
图片来源 |  网 络 



研发测试转入商业应用阶段


近年来,我国多座城市自动驾驶产业发展势头强劲,测试验证与示范应用工作稳步推进,正逐步由研发测试阶段向商业应用阶段过渡。


目前,国内自动驾驶领域在产品准入、运营许可等方面已逐步取得一系列突破,建议进一步加快自动驾驶政策创新步伐,以推动产业实现高质量发展。


然而,当前的政策法规尚不能完全适应自动驾驶技术的规模化部署及商业化落地需求。


经过多年的发展,我国自动驾驶整体能力已显著提升,已初步具备商业化条件。


然而,受现行政策、法规的制约,当前在产品管理、交通管理等方面的法律规定尚不能完全适应自动驾驶技术的规模化部署及商业化落地的新阶段。


随着技术的快速迭代、政策的逐步跟进以及行业标准的统一,将加速推动自动驾驶产业链形成闭环,实现真正的自动驾驶无人化、规模化商业运营。



国内政策对自动驾驶的监管和推动

从国家层面来看,国内高度重视无人驾驶汽车行业的发展,已经上升到国家战略高度。


政策方面,中国无人驾驶行业近年来受到各级的高度重视和国家产业政策的重点支持,多个部委出台了一系列规划及政策推动无人驾驶汽车行业发展。


例如,工信部等发布政策,支持有条件的自动驾驶(L3)和高度自动驾驶(L4),推动智能汽车产业迈入L3时代,智能汽车全产业链有望受益。


在地方层面,各省市为了响应国家号召,积极印发有关政策通知推动无人驾驶汽车行业的发展。


不同地区的政策虽然侧重点略有不同,但总体都围绕着扩大试点范围、加快智能网联体系发展、鼓励更多应用场景、提高自动驾驶模型性能等方面展开规划。


此外,国内采取了中央与地方相协调的立法模式,主要围绕发展设计、交通安全管理及网络数据监管三方面展开。


其立法以发布引导政策和规范性文件为主,而地方层面则更侧重于实施和监管。


这种协调一致的政策推动,为自动驾驶的规模化发展提供了坚实的基础。



自动驾驶技术将对汽车商业模式产生影响

自动驾驶技术的持续发展正促使汽车行业向服务化转型,以适应未来市场的需求和变化。


进入新的竞争阶段,谁能够率先将先进技术落地应用并成功构建可行的商业模式,谁就更有可能在激烈的市场竞争中脱颖而出。


鉴于市场需求的迫切性和使用场景的契合度,商用车领域相较于乘用车领域,更早地实现了自动驾驶技术的商业化应用。


这一变革主要源于用户需求的驱动,推动了技术的快速落地。


过去,无人驾驶技术在公众眼中往往被视为一项投入巨大、回报周期漫长的研发项目。


因此,许多人对无人驾驶技术的商业化前景持怀疑态度,甚至导致一些无人驾驶重卡公司陷入困境。


然而,随着技术的不断进步和成本的降低,无人驾驶技术的商业化前景正逐渐变得明朗。



在商用车领域,无人驾驶技术的早期商业化进程曾受到传感器价格高昂的制约。


以64线激光雷达为例,其价格在过去几年中经历了大幅下降,从最初的高昂成本逐渐降低至更为合理的水平。


这一变化使得无人驾驶技术的成本大幅降低,为其在商用车领域的广泛应用奠定了基础。


当前,高速NOA和城市NOA的渗透率正在稳步提升,但距离主流市场仍有一定差距。


城市NOA作为实现完全自动驾驶的重要门槛,对于未来自动驾驶技术的普及具有重要意义。


因此,各大车企正积极投入研发,以期在自动驾驶技术方面取得更多突破。


同时,随着自动驾驶技术的不断成熟和应用,软件付费模式正逐渐成为汽车盈利的新可能。


硬件的潜在价值在于为软件提供同类用户场景下的唯一入口,为软件盈利打开更大的发展空间。


因此,车企可能会尝试以持平BOM成本的低价出售汽车,通过软件服务实现盈利。


根据罗兰贝格的数据预测,到2030年,单车软件价值将有望实现显著增长,占BOM的比例也将大幅提升。


自动驾驶作为汽车软件的重要组成部分,将成为汽车软件盈利的主要方面之一。


展望未来,端到端自动驾驶技术的发展将进一步推动自动驾驶技术的成熟和应用。


大模型的应用将提高环境感知能力,使得自动驾驶系统能够更好地理解和应对复杂的交通环境。


在数字化浪潮的推动下,自动驾驶从硬件驱动到软件驱动,并正在进入以数据驱动的阶段。


在这一阶段,大模型是核心要素之一,大模型的发展必将推智能驾驶具备更全面、更智能的感知和理解能力。


同时,车路协同技术将成为未来自动驾驶发展的关键方向,通过构建以车路协同为基础的“通信+数据+计算”新体系,实现更高效、更安全的自动驾驶。



发展自动驾驶的产业政策法规正在加速落地


2023年11月17日,工业和信息化部、公安部、住房和城乡建设部以及交通运输部联合发布了《关于开展智能网联汽车准入和上路通行试点工作的通知》,标志着L3级别自动驾驶车辆准入试点的正式启动。


随后,在12月5日,交通运输部办公厅印发《自动驾驶汽车运输安全服务指南(试行)》,为自动驾驶汽车运输安全提供了明确的指导要求。


此前,自动驾驶车辆的应用主要局限于测试区域,而此次《通知》的发布,从国家层面为自动驾驶的商业化进程,包括车辆准入,提供了明确的信号和方向。


值得注意的是,过去用于自动驾驶测试的车辆多以改装车为主,而此次《通知》的主体转变为主机厂,这意味着自动驾驶车辆正式纳入量产车范畴。


L3级别车辆的率先试点,不仅有助于推动当前技术的实际应用,更为后续L4级别自动驾驶车辆的上路准入奠定了坚实基础,探索出一条清晰的路径。


可以说,《通知》的发布是国家将自动驾驶车辆纳入正规管理的开始,体现了对自动驾驶技术发展的高度重视和支持。


例如,试点城市的选择、试点企业的资质、试点车辆的配置以及试点过程中的安全保障措施等,都需满足相应的标准和规定。



与此同时,《自动驾驶汽车运输安全服务指南(试行)》也为自动驾驶车辆的安全运营提供了详细的指导。


该指南涵盖了应用场景、运输经营者、运输车辆、人员配备、安全保障以及监督管理等多个方面,为自动驾驶汽车的商业化运营提供了全面的安全规范。


业内专家认为,自动驾驶技术要实现商业化落地,需要满足全域化、规模量产化和无人化三大条件。


而《安全运输指南》中关于远程安全员配备比例的规定,为自动驾驶车辆在全无人化运营方面创造了有利条件,从立法层面为自动驾驶技术的进一步发展提供了支持。


总体来看,当前的政策节奏与当年国家推动新能源汽车发展的策略相似,都是通过先推出试点、逐步扩大应用范围的方式,推动自动驾驶技术的落地应用。


随着试点工作的深入开展和技术的不断进步,相信自动驾驶技术将在未来得到更广泛的应用和发展。


同时,多地也在积极扩大自动驾驶汽车的测试区域和应用范围,为自动驾驶技术的发展提供了更加广阔的空间和机遇。


此外,我国还建设了多个国家级自动驾驶测试场和示范区,吸引了众多创新主体参与,为自动驾驶技术的研发和应用提供了有力支撑。



车路协同在未来将成体系发展


自2025年起,中国将逐步迈入L3+阶段,车路协同技术作为自动驾驶发展的必然趋势和核心战场,其重要性日益凸显。


车路协同产业的进步将是渐进式的,并随着高级别自动驾驶试点文件的陆续发布,政策将主导推动其在特定道路和区域等场景的应用不断深化和扩大,进而有望推动L4技术的迅速进步。


此外,车路协同路线以其较低的成本、高度的安全性和可靠性优势,将被全面释放,成为自动驾驶领域的核心,甚至成为决定未来汽车产业竞争格局的关键要素。


从中长期视角来看,以车路协同技术为基础,构建涵盖“通信+数据+计算”的新体系,将成为自动驾驶技术发展的主要方向。


未来,高阶自动驾驶将涵盖协同感知、决策和控制等方面,形成车路协同的“世界模型”,能够基于历史驾驶习惯和路况信息预测未来发展趋势;


并通过生成视觉反馈指导车辆进行自主导航、决策和路径规划,从而显著提升自动驾驶的安全性,并优化移动生态系统的运行效率。


根据亿欧智库的预测,至2030年,中国车路协同市场规模有望达到4960亿元,2021年至2030年的复合年均增长率(CAGR)预计为26.64%。


同时,前瞻产业研究院预计,到2030年,中国公路里程将有望增长至615万公里,汽车保有量将达到3.8亿辆;


届时路侧单元(RSU)的应用渗透率有望达到30%,汽车搭载高清地图的渗透率则有望达到5%。


基于上述预测,车路协同主要IT设备如RSU、OBU、高精地图、边缘计算单元等的累计投资规模有望在2026年达到1283亿元,并在2030年有望达到2834亿元。


预计2023年至2030年期间,这些设备将累计拉动投资需求超过2000亿元,显示出车路协同市场巨大的发展潜力。



结尾:


中国自动驾驶行业正处于快速发展阶段,得益于各地政策推动、技术创新、基础设施建设、产业链协同以及市场潜力的释放。


未来,随着技术进一步成熟和法规的完善,自动驾驶有望在更多场景中实现规模化应用。


部分资料参考:慧博资讯:《自动驾驶行业深度:行业现状、未来趋势》,汽车学堂Automooc:《端到端感知决策大模型能够真正实现无人驾驶?》,守正出奇 计算机研究:《自动驾驶新政策落地,车路协同有望加速发展》,天翼智库:《自动驾驶,通往“无人”的路径与未来》,中国交通报:《推动自动驾驶规模化部署商业化应用》


本公众号所刊发稿件及图片来源于网络,仅用于交流使用,如有侵权请联系回复,我们收到信息后会在24小时内处理。



END


推荐阅读:


商务合作请加微信勾搭:

18948782064

请务必注明:

「姓名 + 公司 + 合作需求」


AI芯天下 聚焦人工智能,AI芯片,5G通讯等行业动态
评论 (0)
  • TT电机(直流电机)的功率、电压、电流、瞬间启动电压和电流是其运行的关键参数。这些参数决定了电机的性能和适用场景**。在探讨TT电机的这些特性时,需要综合考虑其电气特性以及启动和运行条件。以下将逐一解析这些关键参数: 1. 功率:    - TT电机的功率通常取决于其设计和应用场景。例如,普通TT电机的额定功率可以在几瓦到几十瓦不等[^4^]。    - 对于不同的TT电机型号,如370电机和310电机,它们的功率输出也会有所不同。例如,370电机通常适
    丙丁先生 2024-06-21 17:18 66浏览
  • 在汽车的复杂电路网络中,仪表网关扮演着信息枢纽的角色。对于驾校使用大众朗逸车主而言,了解仪表网关的位置不仅有助于日常维护,更是故障诊断和车辆升级的关键所在。大众朗逸作为一款深受消费者喜爱的车型,凭借其稳定的性能和经济的油耗赢得了广泛的市场认可。然而,即便是这样一款优秀的车型,在驾校使用过程中也难免会遇到一些技术问题,这时候对仪表网关的了解就显得尤为重要。18年后的大众,网关都是标配,直接从OBD通过CAN监听是没有数据报文对外发出的,不是没有,而是避开诊断请求,这个后边说。朗逸CAN总线技术的引
    lauguo2013 2024-06-21 08:18 74浏览
  • 站上风口,交付量狂飙,装机量翻番……是什么让LiDAR再次“翻红”? 一波三折。如果要用一个词形容近两年的激光雷达市场,恐怕它最为合适。人类纪元,2022年。开启量产元年的车载激光雷达,一度风光无限。当时OEM厂商对激光雷达关键指标提升的需求仿佛“军备竞赛”。加速批量上车,进一步控制成本,将其控制在500美元左右……那一年,产业链上下游众志成城,万众一心。转眼到了2023年,车企在面向ADAS和自动驾驶的感知技术上逐渐分化成两派,纯视觉路线的落地以及价格战带来的降本压力,让很多车企出现
    艾迈斯欧司朗 2024-06-21 17:10 70浏览
  •  经过近几年的618大促之后,如今的618已经被默认的低价竞争给包围了。随着低价竞争的持续蔓延,曾经积极参与其中的一些品牌商,态度也从积极转为消极;各种被“忽悠”的消费者,也在想着法逃离电商平台设置的套路。与此同时,不甘心被大主播绑架的电商平台,与胃口不断加大的头部主播,开始展开极限拉扯。以往热闹的618,如今变成了各路参与者的围城,渴望进去的不停向里面张望,渴望出来的则变着法地希望,跳出618这个牢笼。虚假繁荣背后的暗流涌动在直播电商红利之下,抖音、淘宝、京东、唯品会等各路平台,在直
    刘旷 2024-06-21 09:58 98浏览
  • 随着汽车电子技术的发展,车辆上配备了越来越多的电子装置,这些设备多采用点对点的方式通信,这也导致了车内存在庞大的线束。造成汽车制造和安装的困难并进一步降低汽车的配置空间。因此,汽车总线逐步开始向网络化方向发展。在此背景下,CAN(Controller Area Network)总线应运而生,以其高可靠性和灵活性,成为汽车通信系统中不可或缺的一部分,承载着车辆控制、监控和诊断等关键任务。一、技术演进:从CAN到CAN FD随着技术的持续发展,传统的CAN总线在数据传输速率和带宽上逐渐显现出局限性。
    康谋 2024-06-20 13:55 73浏览
  • 随着时代的飞速发展,新能源汽车以其绿色环保、能效高等特点在全球范围内迅速普及。然而,伴随着这一进程的不断推进,我们不得不面对一个前所未有的现实——新能源汽车的第一波动力系统已步入了报废的爆发期。积尽六年繁华,不过弹指刹那,2024,标志着新能源汽车生命周期管理的新阶段,对于整个行业乃至社会的影响深远且复杂。新能源汽车的推广始于对传统燃油车引起的环境问题的担忧和对可再生能源利用的追求。经过多年的发展,早期的电动车电池技术已经难以满足当前的需求,电池寿命终结成为用户面临的直接问题。随之而来的,是大量
    lauguo2013 2024-06-20 14:23 78浏览
  • ​在为期三天的上海国际嵌入式展会中,树莓派和上海晶珩一起展示了众多的基于树莓派和CODESYS的解决方案,没去过展会现场的小伙伴千万别错过这篇文章!视频地址:https://www.bilibili.com/video/BV1c1421k7ne/?vd_source=a637ced2b66f15709d16fcbaceeb47a9这个基于Raspberry Pi 5的嵌入式系统解决方案集成了16个EtherCAT总线控制的步进电机,旨在实现高性能的多轴运动控制。Raspberry Pi 5作为核
    树莓派开发者 2024-06-21 14:29 73浏览
  • ​Raspberry Pi 已在伦敦证券交易所上市,股票代码为 Raspberry Pi Holdings plc。这是 Raspberry Pi 的分水岭,也是发展新阶段的开始:进入公开市场将使树莓派能够更快地制造出更多我们喜爱的产品。Raspberry Pi 基金会在首次公开募股中筹得的资金将支持其在第二个十年中影响全球的雄心壮志;有关首次公开募股对基金会意味着什么的更多信息,请点击这里查看菲利普的博文。博文地址:https://www.raspberrypi.org/blog/what-w
    树莓派开发者 2024-06-20 15:15 85浏览
  • 随着科技的进步不断更迭,电子设备的传输速度越来越快,时至今日对于高速传输带宽的要求也愈来愈高。印刷电路板(PCB,以下简称PCB) 在高速传输接口中扮演不可或缺的角色,其高频特性直接影响了整体传输效能。高频特性是指PCB在高频率下的电气性能,包括阻抗、插入损耗、回波损耗、群延迟等。这些参数会影响信号的传输速度、完整性和可靠性。 PCB潜在风险 你知道吗?如果PCB的高频特性不佳时,可能会导致以下问题: 信号传输速度变慢信号衰减增加信号反射增加信号失真 这些问题都会影响电子设备的性能,甚至
    百佳泰测试实验室 2024-06-20 16:05 114浏览
  • 反激电源包含原边反激何副边反激,原边反馈动态响应比副边反馈慢,但是相对成本低,无论是原边反馈还是副边反馈由于反激电源电路简单,成本低广泛的用在在电动两轮车Escooter,电动工具,打印机,清洁电器等充电场景,也广泛的应用在电表,家电,新能源等场景作为辅助电源给芯片供电,下面就以无锡明芯微的MX1210E作为例子详细的介绍下一款24v2.5A的一个方案,从该方案来看输入口有NTC防止过流,采用10D561K 的压敏作输入过压保护,有个滤波的0.47uF的X电容并采用分压电阻做X电容放电,串联差模
    王萌 2024-06-21 09:27 235浏览
  • GPIO的功率、电压和电流取决于具体的GPIO类型和配置。 GPIO(General Purpose Input/Output)通用型输入输出端口,是一种多功能的电子接口,广泛应用于微控制器、微处理器以及各种电子设备中,用于读取或输出信号。理解GPIO的功率、电压和电流的相关特性是进行电子电路设计和编程的基础。这些参数决定了GPIO端口能安全处理的电量,以及它与其他电子组件交互时的兼容性。 从电压角度来看,GPIO端口通常设计有一定的耐压限度,这意味着它们可以安全地在特定的电压范围内工作。例
    丙丁先生 2024-06-21 17:43 78浏览
  • 电脑显示器已逐渐成为现代人时常会接触到的3C产品,能带给消费者愉快的视听娱乐,不管是看电影、追剧、听音乐放松心情,或是玩一场紧张刺激的电竞游戏。忙碌之余,能够偶尔享受闲暇时光,也是一种释放。 您是否也曾遇过,在享受电影或游戏的过程当中,显示器带给我们的影像和声音突然出现不协调的情况呢?这就像是两者间没有互相搭配好,节奏步调变得不一样!这种情况我们称为「影音延迟」或「影音不同步」。 当这类问题持续发生时,无法好好享受电影或者追剧,会让人心情烦躁。对于电竞玩家来说更是硬伤,除了分心、受干扰外,更
    百佳泰测试实验室 2024-06-20 15:55 105浏览
  • 1. 版权保护芯片RJGT102介绍为了防止硬件电路与固件被抄袭,核心在于加密芯片和安全解决方案的设计,目前大多MPU并不具备安全防护功能,所以最好的办法是使用一颗专用的加密芯片,通过加密芯片对接MPU,进行认证,授权,保存关键数据等。RJGT102采用了SHA256对称加密算法,256位的大数加密, 加密算法强度高。每片RJGT102都有唯一的客户编码,非常适合做防抄板,防抄软件,管控工厂生产数量,防止方案外泄等。参与SHA256运算的数据为:8字节Key(可动态更换),8
    万象奥科 2024-06-20 17:37 64浏览
  • Matter是连接标准联盟(CSA)所推出的统一连接标准,旨在让不同品牌的智能装置可以互通互联。并且支持包含Wi-Fi、Ethernet、Thread和Bluetooth等多种连接协议。 随着Matter被广泛运用于智能家居生态圈,目前Apple Homekit、Amazon Alexa、Google Home和Samsung SmartThings等智能语音助理都已支持Matter。然而,要是网络服务供货商的网络突然断线了,家里的智能装置是否还能正常操作?还是必需连接到外部网络才能控制智能装
    百佳泰测试实验室 2024-06-20 15:40 113浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦