详细解读UCIe2.0

电子工程世界 2024-08-09 07:02
▲ 更多精彩内容 请点击上方蓝字关注我们吧!
日前,通用芯粒互连(UCIe)产业联盟最新公布了 UCIe 2.0 规范,支持可管理性标准化系统架构,并全面解决了系统级封装(SiP)生命周期中跨多个芯粒(从分类到现场管理)的可测试性、可管理性和调试(DFx)设计难题。

UCIe 2.0 规范重点引入可管理性功能(可选)以及 UCIe DFx 架构(UDA),可以测试、遥测和调试每个芯粒的管理结构,实现了与供应商无关的芯片互操作性,为 SiP 管理和 DFx 操作提供了灵活统一的方法。

UCIe 2.0 规范还支持 3D 封装,相比较 2D 和 2.5D 封装架构,可提供更高的带宽密度和更高的能效。

UCIe-3D 优化了混合键合(hybrid bonding),具有凸点间距功能,凸点间距可大至 10-25 微米,小至 1 微米或更小,以提供灵活性和可扩展性。

UCIe 2.0 规范另一个特点是优化了互操作性和符合性测试的封装设计。符合性测试的目的是根据已知的良好参考 UCIe 实现验证被测设备(DUT)的主频段支持功能。UCIe 2.0 为物理、适配器和协议符合性测试建立了初步框架。

UCIe 2.0 规范的亮点如下:

  • 全面支持具有多个芯粒的任何系统级封装(SiP)结构的可管理性、调试和测试。
  • 支持 3D 封装,大幅提高带宽密度和能效。
  • 改进系统级解决方案,将可管理性定义为芯片堆栈的一部分。
  • 为互操作性和合规性测试优化封装设计。
  • 完全向后兼容 UCIe 1.1 和 UCIe 1.0。

因为摩尔定律的失效,半导体行业过去多年正在寻找提升芯片性能的方法,而Chiplet正在成为几乎所有巨头的共同目标。然而,因为Chiplet的理念是将芯片的不同功能模块变成一个die,如何保证这些die能够更通用地连接到一起就成为了行业的头等大事。

于是,UCIe便顺势成立。据介绍,UCIe是一种开放的行业架构标准,可在不同chiplet之间提供die-to-die之间的接口,解决物理芯片间 I/O 层、芯片间协议和软件堆栈问题。

UCIe为die提供了标准接口(source:Cadence)

那么新公布的UCIe 2.0 规范有哪些细节,我们一起来看一下UCIe联盟同步发布的UCIe 2.0白皮书,深入了解。

以下为白皮书正文:

UCIe 2.0 规范:持续创新,推动开放 Chiplet 生态系统

Universal Chiplet Interconnect Express  (UCIe) 是一种开放的行业标准互连,可在 Chiplet 之间提供高带宽、低延迟、节能且经济高效的封装内连接。它满足了整个计算领域(涵盖云、边缘、企业、5G、汽车、高性能计算和手持设备)对计算、内存、存储和连接的预计不断增长的需求。UCIe 能够封装来自各种来源的die,包括不同的代工厂、设计和封装技术。

UCIe 2.0 规范涉及两个广泛的领域,以推动蓬勃发展的开放 Chiplet 生态系统。第一个规范以整体方式解决了任何具有多个 Chiplet 的系统级封装 (SiP) 结构中出现的可管理性、调试和测试挑战。该解决方案超越了 UCIe 接口,使用 UCIe 增强功能,以完全向后兼容的方式进行扩展;第二个领域涉及使用混合键合互连等技术(我们将其称为 UCIe-3D)的间距非常细(9 µm 到大约 1 µm,甚至更低)的垂直集成芯片。

一、在整个芯片生命周期中解决 SiP 级别的可管理性、调试和测试挑战

可测试性、可管理性和调试是需要持续创新的三个主要方面。UCIe 1.0 和 1.1 规范有几种机制来处理互连级别的可管理性和测试/调试/遥测(统称为 DFx)设计的各个方面。示例包括通道裕度(lane margining)、合规性测试、故障报告、边带访问(sideband access)等。然而,在芯片和 SiP 级别仍有许多具有挑战性的问题必须解决,才能实现开放、即插即用的基于chiplet的生态系统的愿景。

UCIe 联盟正在全面解决这些挑战,超越接口级别,解决从die分类、封装/键合到现场级别的挑战——这涵盖整个硅片生命周期,这些增强功能将使我们的成员能够应用这些学习成果并改进上游。

在本文中,我们提供了实现广泛的、即插即用的基于小芯片的生态系统所需克服的挑战的示例。

在分类芯片测试期间,虽然我们可以探测凸块,但无法对微凸块进行探测;尤其是当我们转向 25µ 凸块间距时。因此,我们必须创新,使用其他凸块。同样,我们应该能够在现场无缝管理维修或固件升级。

对于在封装级别可控性和可观察性有限的Chiplet,调试提出了独特的挑战(例如,无法在封装内插入逻辑分析仪或示波器)。行业应如何处理 SiP 中芯片的可管理性?最重要的是,我们如何安全地解决这些问题?一些chiplets可能无法从封装引脚直接访问(见图 1a),这一事实使这些问题变得更加困难。我们还需要处理各种带宽需求。例如,不同的chiplets对扫描链、调试、可管理性等所需的带宽范围不同。


我们对 UCIe 2.0 规范的方法是定义一个通用基础设施,该基础设施可在使用现有 IP 构建块(building blocks )以及封装级别的外部接口的同时解决所有已确定的挑战。我们认为这些功能是互补的,我们的方法适用于现有 IP(甚至非 UCIe IP),并对 UCIe PHY 进行了增强。我们还使用外部封装引脚来访问芯片集,以通过规范中定义的桥接机制进行管理、调试或测试。这些接口和 IP 必须与封装上的 UCIe 2.0 链路无缝协作,以提供所需的外部和内部访问。图 1b 列出了不同接口可用的带宽,为 SiP 设计人员提供了多种选择。

在 UCIe 2.0 规范中,可管理性是可选的。支持的机制包括发现chiplet集及其配置;初始化芯片集结构(initialization of chiplet structures)和参数(即串行 EEPROM 替换);固件下载;电源和热管理;错误报告;遥测;检索日志和崩溃转储信息;测试和调试;启动和报告自检状态;以及芯片安全的各个方面。这些机制利用现有的适用行业标准,并且与chiplets上的底层协议无关。这些机制旨在跨来自不同供应商的chiplet工作,并支持特定于供应商的扩展。这些功能是可发现和可配置的,允许在 SiP 之间快速部署通用固件库。UCIe 可管理性所需的核心功能可以通过硬件和/或固件实现,从而提高灵活性。

UCIe 2.0 可管理性基线架构(manageability baseline architecture,如图 2)定义了一种桥接功能,用于连接到外部接口(例如 SMBus 或 PCIe),从而实现封装外连接。每个chiplet组中的管理结构由多个管理元素组成,其中一个元素充当管理主管,负责发现、配置和协调 SiP 的整体管理,并充当可管理性信任根。

UCIe 管理传输被定义为一种独立于媒体(media-independent)的协议,用于芯片组中管理实体之间以及 SiP 中芯片组之间的通信。安全机制被定义为根据功能提供所需的保护级别。定义了两种管理链路封装机制,以使用边带和主带传输 UCIe 管理传输数据包。UCIe 定义了最多八个独立的虚拟通道来提供服务质量,每个通道都具有有序或无序语义。数据包基于信用(credits)进行交换,信用最初是在链路训练期间协商的。


UCIe DFx 架构 (UDA:UCIe DFx architecture) 包含测试、遥测和调试,并通过管理结构进行覆盖。UDA 基于每个chiplet内的 Hub-Spoke 模型(图 2)。每个chiplet都支持一个 DFx 管理中心 (DMH:DFx Management Hub ),这是一个管理元素,可充当访问芯片内测试、调试和遥测功能的网关。DMH 允许发现这些功能,并将与这些功能相关的管理传输数据包路由到各种连接的 DFx 管理“辐条”(DMS:DFx Management “Spokes” )。辐条(Spokes)是实现给定测试、调试或遥测功能的实体。一些示例包括扫描控制器、MEM BIST、SoC(片上系统)结构调试、跟踪协议引擎、核心调试、遥测等。


架构配置寄存器(图 3)在现有寄存器之上具有 UCIe-wrapper,为软件提供了一个通用框架。对于系统级使用,可以根据 Spoke 的(UCIe 联盟分配的)供应商 ID (VID) 和(供应商分配的)Device ID (DID) 加载特定于供应商的驱动程序以支持每个独特的功能。UDA 的管理数据包可以作为内存访问协议数据包(例如,用于发现chiplet中的 DMH/DMS)和/或以供应商定义的 UCIe DFx 消息格式(例如,用于通过chiplet将调试信号发送到 PCIe 等封装引脚,以便使用逻辑分析仪进行观察)发送。图 4 演示了其他使用模型。


虽然管理数据包可以在现有 UCIe 端口上进行时分复用,但 UCIe 2.0 还提供了添加专用 UCIe-S 端口以实现可管理性和 UDA 功能的额外功能。这些端口可以是简单的边带(sideband),以 4 个凸块或半宽 (x8) 提供 800 Mb/s/方向,或更高,UCIe-S 以 32 GT/s 的速度为每个 x8 提供 256 Gb/s/方向。

二、垂直集成芯片组可显著提高功率性能,并采用 UCIe-3D

UCIe 联盟于 2022 年 3 月成立,我们发布了定义明确的 UCIe 1.0 规范,解决了平面连接(2D 和 2.5D)问题。我们认识到垂直集成的重要性,并表示我们打算研究 3D 芯片组。UCIe 2.0 规范通过完全定义的规范(涵盖平面和垂直连接)兑现了这一承诺。

十多年来,随着封装内存和计算的商业化,提供垂直连接的 3D 互连芯片组的技术取得了显著进步,证实了需求的存在。现在是时候通过一系列选项来标准化接口,以满足生态系统中的各种需求。

3D 封装技术(例如混合键合 (HB:Hybrid Bonding))的最新趋势是大幅缩Chiplet之间的凸块间距。UCIe-3D 的目标是将凸块间距从 9 µm 缩小到 1 µm,甚至可能更低。3D 互连将Chiplet之间的距离缩小到几乎为 0。因此,互操作性需要限制在相同的凸块间距内。虽然这不是一种广泛的即插即用(即,凸块间距为 1 µm 的芯片只能与凸块间距为 1 µm 的另一个chiplet混合键合,而不能与凸块间距为 9 µm 的chiplet混合键合),但关键性能指标 (KPI:key performance indicator) 的改进(例如带宽密度、功率效率等)是巨大的。如表 1 所示。


UCIe-3D 的第一大优势是带宽密度增加。这是双重优势。首先,减小的凸块间距(从 9 µm 降至 1µm 以下)意味着给定面积的导线数量与平方成反比;例如,将 2.5D 的 25 µm 与 3D 的 5 µm 进行比较,可得出相同面积的导线数量增加 25 倍;其次是面积本身。与 UCIe 2D/2.5D 相比,UCIe-3D 具有真实连接与海岸线消耗的优势。这意味着外围 PHY 上不会浪费任何面积,并且整个芯片组都可用于 3D 连接。


图 5 显示了使用 UCIe-3D 连接的两个Chiplet组和九个片上网络控制器 (NOC)。要获得凸块间距缩放的好处,必须保持相关电路简单,限制凸块。随着带宽密度的增加,无需驱动更高的频率。如表 1 所示,即使在 4 GT/s 频率下,带宽密度也比 32 GT/s 的 UCIe 2.5D 提高了几个数量级(例如,凸块间距为 1 µm 的 UCIe-3D 为 300 TB/s/mm²,而凸块间距为 25 µm 的 UCIe-2.5D 为 1.35 TB/s/mm²)。为了适应减小的凸块间距,我们通过选择适当的误码率 (BER:bit error rate ) 消除了对 (反) 序列化、CRC、重放等的需求(如表 1 所示)。同样,ESD 保护电路必须先降低至 5V CDM,并从 3 µm 开始逐渐消除。

UCIe-3D 的第二个主要优势是功耗更低。随着距离减小(~0),相关的电寄生效应也随之减小。随着 SoC 频率(<= 4 GT/s),电路变得简单 - 由简单的逆变器组成。再加上频率降低,功耗甚至更低(至少低一个数量级)。

4、结论

UCIe 技术发展势头强劲!自 UCIe 联盟成立以来,UCIe 联盟成员已宣布了产品开发,并提供了基于 UCIe 1.0 和 1.1 规范的可操作硅片演示。我们正处于与其他成功标准(包括 PCIe、CXL 和 USB)类似的数十年历程的早期阶段。随着技术的普及,我们的成员致力于对未来规范进行必要的改进;

UCIe 2.0 是我们承诺的体现。可管理性和 DFx 增强功能表明我们不断致力于改进现有方法,而 UCIe-3D 则表明我们愿意接受必要的挑战,以实现能效性能的指数级改进。

最后,我想描绘一个系统级封装的愿景,其中使用现有的 UCIe-2.5D 和 UCIe-2D 平面互连连接多个 UCIe-3D 芯片组堆栈,以及所有即将推出的增强功能。如今的芯片级封装就像是小城市,其密度高于十年前的单片芯片,而后者可以比作小村庄。未来采用 UCIe-3D 的 SiP 将像一座摩天大楼林立的大都市,密度极高。计算和内存元件紧密封装在一起的高密度意味着比特传输距离更短,从而实现卓越的性能和更低的功耗。换句话说,未来确实非常光明。

值得一提的的是,作为芯片行业的重要参与者,NVIDIA 硬件工程副总裁 Ashish Karandikar在评价UCIe新标准时候谈到:“UCIe 2.0 规范的发布标志着基于芯片的系统设计发展的一个重要里程碑,它提供了一种初始化、管理和调试片上系统的标准化方法。作为 UCIe 联盟的成员,NVIDIA 致力于推进该规范的各个方面,以帮助推动下一代计算系统的创新和性能。”
来源:UCIe等

· END ·



欢迎将我们设为“星标”,这样才能第一时间收到推送消息。
扫码关注:汽车开发圈,回复“驾驶

领取自动驾驶、辅助驾驶等方面免费资料包!



扫码添加小助手回复“进群”

和电子工程师们面对面交流经验

电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论 (0)
  • 最近,巴黎奥运会将全球人民的心捆绑在一起,奥林匹克精神的魅力也让低沉已久的大众情绪再度昂扬。在这样一场场顶尖运动员大展身手的体育盛事中,你可能会好奇,运动员们如何在激烈的比赛中保持最佳状态呢?特别是对于耐力运动员?这就不得不提到一个关键因素——体温管理。比如游泳。当地时间8月4日,在巴黎奥运会男子4×100米混合泳接力决赛中,由徐嘉余、覃海洋、孙佳俊、潘展乐组成的中国队夺得金牌。这是中国游泳队首次获得该项目的奥运金牌,更是打破了美国队在该项目奥运会历史上长达40年的金牌垄断。在全民感慨游泳健儿拼
    艾迈斯欧司朗 2024-09-14 17:35 31浏览
  •     近日看到《对人类意识的重视回归网络安全视野》一文,来自于IEEE电气电子工程师学会IEEE Transmitte 8月7日的文章。看完后颇有些感想。作为一名工程人员做了那么多工程,维护了那么多的设备和系统,我对非法黑客是深恶痛绝,同时也深深感到网络安全的重要性。试想一下,一个完整的医疗设备开发耗资巨大,大量人力,消耗时间数年,还要做大量测试和验证,能为人类健康带来福音。无奈道高一尺魔高一丈,非法的黑客组织硬生生将救人机器变成了害人的工具(国内外既有案例)。他们不需要耗
    广州铁金刚 2024-09-14 11:53 50浏览
  •  电容位移传感器将继续向更高精度、更高灵敏度、更小型化的方向发展。随着物联网、大数据等技术的不断普及,电容位移传感器将与更多领域相结合,为人类创造更加美好的未来。 一、电容位移传感器的构成 电容位移传感器通常由两个平行极板构成,其中一个极板固定不动,另一个极板与被测物体相连,随被测物体的位移而移动。当被测物体发生位移时,两个极板之间的距离会发生变化,从而导致电容值的变化。通过测量这一变化,就可以准确地知道被测物体的位移量。 二、电容位移传感器的优势 1.高精度:具有极高的测量精度,能够满足各种高
    博扬智能 2024-09-14 15:35 21浏览
  • 2024年9月14日,调研咨询机构环洋市场咨询出版的《全球D级全动飞行模拟机行业总体规模、主要厂商及IPO上市调研报告,2024-2030》,主要调研全球D级全动飞行模拟机总体规模,主要地区规模,主要企业规模和份额,主要产品分类规模,下游主要应用规模以及未来发展前景预测。统计维度包括销量、价格、收入,和市场份额。同时也重点分析全球市场主要厂商(品牌)产品特点、产品规格、价格、销量、销售收入及发展动态。历史数据为2019至2023年,预测数据为2024至2030年。 调研机构:Global In
    GIRtina 2024-09-14 11:59 56浏览
  •  电机转速传感器是工业自动化和控制系统中的重要元件,它们能够实时、准确地测量电机或其他旋转设备的转速,确保系统运行的稳定性和可靠性。随着技术的发展,电机转速传感器的种类和类型日益丰富,以满足不同应用场合的需求。 电机转速传感器是用于测量电机转速的设备,广泛应用于工业自动化、车辆、家电等领域。根据工作原理和应用场景,电机转速传感器主要可以分为以下几种类型: 1、光电传感器: (1)光电编码器:通过光学原理测量转速,通常由一个旋转的编码盘和光源组成。编码盘上有透明和不透明的区域,光源通过编码盘产生脉
    博扬智能 2024-09-14 17:26 33浏览
  • 在信息安全的诸多领域之中,密码的安全存储无疑已然成为最为核心的问题之一。随着攻击技术的不断演进,传统的密码存储方法已无法抵御现代复杂的威胁。更为安全、健壮的密码存储机制也成为当代信息安全从业者的关注点。本篇文章将引入并介绍密码存储中的基石,关于密码哈希、盐加密(Salting)、密钥派生函数(KDF)的原理及其应用,揭示密码存储中的常见误区,并分享一系列安全实践。一、为什么不能使用明文存储密码直接将密码以明文存储在数据库中无异于为攻击者打开了方便之门。一旦数据库遭遇泄露,攻击者将轻而易举地获得所
    艾体宝IT 2024-09-14 17:40 43浏览
  • 2024年9月14日  Global Info Research行业调研机构发布的《全球人工智能实验室行业总体规模、主要厂商及IPO上市调研报告,2024-2030》分析了全球人工智能实验室总体规模,主要地区规模,主要企业规模和份额,主要产品分类规模,下游主要应用规模等。统计维度包括收入和市场份额等。不仅全面分析全球范围内主要企业竞争态势,收入和市场份额等。同时也重点分析全球市场主要厂商(品牌)产品特点、产品规格、收入、毛利率及市场份额、及发展动态。历史数据为2019至2023年,预测
    GIRtina 2024-09-14 13:41 57浏览
  • 随着物联网(IoT)、工业自动化、医疗设备等领域对嵌入式系统的需求不断增加。嵌入式核心板(SOM)作为嵌入式系统的核心组件,其市场需求也随之增长。在快速发展的同时,也面临一定的挑战:如进口芯片供应链不可控、单一平台受地域政策限制、多平台产品开发周期长、开发难度高等问题,米尔电子设计开发了纯FPGA 开发平台,支持一款平台,双芯设计,支持同款底板可换国产和进口芯片,推出MYIR 7A100T和PG2L100H核心板,解决客户对国内国际市场的不同需求。国产开发维护与进口主流出货痛点痛点一 政策受限,
    米尔电子嵌入式 2024-09-14 14:56 16浏览
  •  电机转速传感器是一种将电机旋转速度转换为可测量电信号的装置,它不仅是电机控制系统中的重要组成部分,更是实现设备精准控制、提高生产效率的关键。无论是风力发电、汽车制造还是工业自动化领域,电机转速传感器都发挥着不可替代的作用。 一、揭秘电机转速传感器的工作原理电机转速传感器的工作原理多种多样,但核心思想都是通过感知电机的旋转运动,并将其转换为电信号输出。以下介绍几种常见的转速传感器类型及其工作原理: (1)磁电式转速传感器 磁电式转速传感器以其结构简单、抗干扰性强而广受青睐。它主要由铁芯、磁钢和感
    博扬智能 2024-09-14 15:59 18浏览
  •  电容位移传感器作为一种重要的精密测量工具,在科研、教学和生产中发挥着不可替代的作用。通过了解不同类型的电容位移传感器及其特点和应用领域,可以更好地选择和使用这些传感器,为科技进步和工业发展贡献力量! 一、平行板电容传感器 平行板电容传感器是最常见的电容位移传感器类型之一,它由两个平行的电极板构成,当被测物体发生位移时,两个电极板之间的距离会发生变化,从而导致电容值的变化。通过测量这种电容值的变化,我们可以准确地得到物体的位移量。结构简单、易于制造,广泛应用于各种需要精确测量的场合。 二、圆柱电
    博扬智能 2024-09-14 11:55 26浏览
  • 2024年9月14日 调研咨询机构环洋市场咨询出版的《全球特厚止裂钢板行业总体规模、主要厂商及IPO上市调研报告,2024-2030》只要调研全球特厚止裂钢板总体规模,主要地区规模,主要企业规模和份额,主要产品分类规模,下游主要应用规模以及未来发展前景预测。统计维度包括销量、价格、收入,和市场份额。同时也重点分析全球市场主要厂商(品牌)产品特点、产品规格、价格、销量、销售收入及发展动态。历史数据为2019至2023年,预测数据为2024至2030。 调研机构:Global Info Resea
    GIRtina 2024-09-14 11:57 58浏览
  • 作者介绍 一、Skydel与NI USRP软件定义架构(Software Defined Architecture)是一种新型的架构模式,它是一种基于软件的架构,通过软件来定义系统的功能,从而提高系统的运行效率和能量效率。软件定义架构可以将硬件资源抽象化,从而使得应用程序可以更好地利用硬件资源,提高系统的性能和可靠性。Skydel GNSS仿真引擎是创新型的软件定义GNSS模拟仿真引擎,它利用PC的GPU的计算能力并借助Nvidia GPU极快的数学计算能力处理星座、频率与轨迹信息,并
    虹科测试测量TM 2024-09-14 15:33 22浏览
  • 采用快速紧凑的 Raspberry Pi 计算模块3(Raspberry Pi Compute Module 3)的简易设置,为Korg备受推崇的高端乐器提供了一种经济高效的解决方案。解决方案:Compute Module 3企业规模:大型企业行业:音乐技术标志性的乐器制造商Korg起源于20世纪60年代的日本,最初将鼓机推向市场,随后是日本第一台合成器和世界上第一台针式调音器。随着20世纪70年代和80年代电子音乐的兴起,Korg在国际上声名鹊起。随着对功能更强大且更实惠的合成器的需求不断增长
    树莓派开发者 2024-09-14 14:54 10浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦