基于MATLAB的ACC控制算法设计及仿真测试

原创 汽车电子与软件 2024-09-20 08:53


作者 | 不可说
出品 | 汽车电子与软件


  

         

 

自适应巡航控制系统(ACC)是汽车自动驾驶技术研究中一项重要的纵向跟驰技术,通过有无前车、前车的加减速情况、跟车距离等传感器传递的信息,在控制系统中通过车间距、加速度控制等相关算法给定主车加速度,控制车辆的纵向跟驰速度,从而有效减轻驾驶员在驾驶过程中的频繁、持续的操作,降低驾驶员的负担,增强车辆的通行性,提高车辆行驶的主动安全性。

在以往的研究与应用中,ACC的实现大多基于毫米波雷达的测距功能来实现的,这是因为毫米波雷达的成本相对于激光雷达要低很多,同时,也较为便捷的集成与车身上。但是,激光雷达是智能车未来发展的必不可少的助力,它可以实现目标的测速、测距、目标的识别、定位与地图的构建等功能,因此,激光雷达极有可能成为今后智能车的标准配件,借助激光雷达实现目前已成功应用的智能辅助驾驶系统也是有研究必要的。



#01
自适应巡航系统的设计
 

1.1 稳态跟随车间距特性 


在车辆跟驰的车间距控制策略中,恒定时间间隔(constant time-gap,CTG)策略和恒定间隙策略适用广泛,在稳定跟随运动(即,)中, “跟车时间间距” 定义如下:


其中,是前面的车辆和本车之间的距离间隔,并且是本车车速,该间隙表示“从前方车辆的尾部表面到目标车辆的前表面的距离”。 
 
给出用于表示在稳定跟随情况下车间距和车速之间的关系的一阶和二阶回归模型:

车间距的一阶回归模型:


车间距的二阶回归模型:


其中,表示速度为0时的车间距,是线性系数,是二次系数。

Fancher.P.[3,11]等人采集了143位驾驶员的数据,对比稳态跟随情况下的车间距的一阶回归拟合与车间距的二阶回归拟合,发现车间距的一阶回归拟合就可以很好的描述驾驶员的稳态跟随情况,所以,在这里取

1.2 跟车模式的上层决策 


目前来讲,规划车辆正常跟随情况下的所需加速度常用的方法之一为线性最优控制理论。

解决最优控制问题的关键在于运动方程的建立,这个运动方程应当描述清楚受控运动的过程,同时也要给出受控系统中变量的范围,明确初始时的运动状态,与所要达到的目标,并选定某一个性能指标对运动过程进行评价。一般来讲,性能指标的选取与控制运动方程和运动状态息息相关。

使用积分器对车辆进行建模,受控车辆和前车的运动状态可以用状态空间模型表示如下:


是线性系数,即取“跟车时间间距”u 表示受控车辆的加速度,干扰量表示为前方车辆加速度,跟车的状态矩阵表示为:

   

上式中,表示期望的车间距,即利用车间距的一阶回归模型计算得到的结果,表示实际车间距,即利用激光雷达测得的车间距;表示前方车辆的速度,表示本车车辆的速度,稳态跟随情况下车辆的控制可以看作线性二次优化问题,最小跟随距离误差和速度误差的状态反馈控制原理及控制输入的设计如下:


权重矩阵有如下表示:


选择状态反馈原理的增益来使最代价函数小化。通过求解公式J可以确定受控车辆的期望加速度。根据李雅普诺夫的第二法和黎卡提方程有:


系数矩阵的计算表达式如下:



是黎卡提方程的正定稳态解。因此,期望的加速度表示为:


是受控车辆的速度的函数,表示控制增益,并且是通过调整加权矩阵得到的。由于加权矩阵对车辆系统的性能有影响,因此选择加权因子或者选择对应的来实现受控车辆的自动控制。

在跟车模式下,存在这样一种情况:旁边车道上行驶的车辆,突然并入本车车道,并且并入后车间距较小、目标车辆的速度较小。这样对于受控车辆来讲是危险的,因为上述的跟车加速度决策是考虑一般情况下的稳态跟车,主要考虑到驾驶员的乘坐主观感受,因此在下文中会对之前决策的加速度进行限制,但是有危险情况发生时,加速度则不应限制。是否为危险情况可以用来进行判断,当下式成立时则认为危险:

   

为危险临界的的值,一般可取0.5。

危险情况下的加速度可由下式决策:


表示的是紧急制动时的增益系数。

1.3 速度跟随模式的上层决策 


当车辆前方没有其他车辆或者障碍物时,即受控车辆前方的激光雷达返回点云不包含非地面点云。这时ACC的功能主要体现在对速度的跟随上,即受控车辆自动加减速,使其达到驾驶员所设定的速度,并维持这个设定的速度行驶。

对于某一个特定的设定速度,对于不同的速度差值,希望加速度变化可以是非线性的,并且希望尽可能的减少运算量,具有较强的鲁棒性和稳定性,因此,在这里采用模糊控制决策速度跟随模式下的加速度。

模糊控制器包括四部分:

(1)模糊化,(2)规则库,(3)模糊推理,(4)解模糊。

首先要确认模糊控制器的输入量,将其转变为模糊控制器可输入的需求量,确定每个输入的模糊语言值和相应的隶属函数,根据相关的专家经验建立合适的模糊规则,再基于模糊规则进行推理决策,最后进行解模糊,得到的量就是控制输出量。

模糊控制原理:


在模糊控制中,被控对象的元素的所有集合可称为论域,以表示论域,把上的实值函数记为 ,那么则有下式成立:    


如果中的任意一个元素,那么表示的就是对于的隶属度,因此,把称为隶属度函数。可以通过控制达到控制的目的。表示完全归属于表示完全不归属于表示不完全归属于,即介于前两者之间。

在模糊控制中,精确的变量通过隶属度函数将其转化为模糊量,是解决非线性时变问题的关键。隶属度函数的选择具有极大的主观性,视情况而定,但是要考虑到整个论域,不能遗漏论域里面的元素。以下三种隶属度函数在控制系统中应用广泛:正态分布型(高斯基函数)、三角形和梯形:

1)正态分布型数学表达式


其中,为函数的中心值,表示函数的宽度。

2)三角形数学表达式

 
其中,为三角形的三个形状参数。

3)梯形数学表达式:  


其中,为梯形的四个形状参数。

模糊控制器的结构设计,是指确定其输入变量与输出变量的个数,通常将一个输入一个输出的模糊控制器称为单变量模糊控制系统(SISO),又称为一维模糊控制器,其他数量的输入量/输出量的模糊控制器称为多变量模糊控制系统(MIMO),理论上,模糊控制器的维数越高,控制越为精细,但是模糊规则的制定相当复杂,同时,计算量也很大,车辆速度跟随模式下的加速度求解较为简单,应用一维模糊控制器即可,如图所示:


采用模糊控制器来决策出车辆的当前期望加速度,使车辆底层模型可以理想的跟踪上期望车速,选取期望车速与当前车速的速度差,作为模糊控制器的输入信号,即:


上式中,为驾驶员的期望车速,为受控车辆的本车车速。

对于而言,采用七个模糊语言子集来确定,即,分别对应负大、负中、负小、零、正小、正中、正大,输入变量的论域为;对于输出变量,即期望加速度,也采用七个模糊语言子集来确定,即,输出变量的论域为,这里主要考虑到速度跟随过程中的舒适性,所以不采用较大的加减速度。

参考专家经验,并依据车辆传动系统的动力学特性与驾驶员驾驶习惯,确定模糊控制规则的选取原则如下 : 
 
(1)速度误差较小时,应该产生较小的期望加速度,车辆可以平稳的达到期望速度;

(2)速度误差处于中等水平时,应该产生较大的期望加速度,这样可以很快的缩小速度误差,当其达到较小的水平时,又以较小的加速度值使车辆平稳的达到期望速度;

(3)速度误差处于较大水平时,应该产生一个中等的期望加速度,因为速度误差值较大时,根据驾驶员习惯,加速度变化规律往往是由小变大再变小,因此,速度差较大时应该产生一个中等加速度值,快速又不失平稳的过渡到(2)与(1)的状态。

根据上述的三条原则,确定模糊控制规则如下表:


防止加速过程产生加速度的跳变,同时保持加速过程的平稳变化,采用重心法进行加速度的决策。

输入变量和输出变量的模糊子集采用三角形隶属度函数,如图所示:

   
表达模糊控制器输入输出的关系如下图所示:


1.4 ACC模式的切换 


ACC主要分为速度跟随与跟车两个模式,这两个模式均可决策出车辆的加速度,在开启ACC后,应该决定进入哪个模式,或者,满足某种条件后,应由当前的模式切换到另一个模式。当没有前方目标车辆的时候,毫无疑问的应该为速度跟随模式;当存在前方目标车辆时,并且前方车辆与受控车辆距离足够近,此时应该为跟车模式。以往常用的模式切换条件可以用图来描述:


可以看出,在坐标系中,三四象限表示车间距为负值,即车辆会发生碰撞,这是不允许的,所以三四象限为死区,不需要考虑。模式切换线为一、二象限中的一条水平直线,这条直线表示车间距为,当车间距大于时,ACC处于速度跟随模式,当车间距介于之间时,ACC处于跟车模式,很显然,这种模式判别条件仅与车间距有关,而没有考虑车速、相对车速的影响。   

由于第二象限的是负的,在这象限内的沿任何轨迹的运动,所代表的车间距都不会增加,从物理上来说,这意味着主车(受控车辆)接近前车,因为它的速度比前车大,类似的推理表明,车辆的对应状态处于第一象限时,主车与前车的车间距不会减小,这意味着主车(受控车辆)远离前车。因此,可以说,车辆运动状态处于第一象限时比处于第二象限时更为安全,所以,当受控车辆由速度跟随模式切换到跟车模式时,车辆状态处于第一象限时比处于第二象限时可以 “更晚”的进行切换,并且,速度差值越大时,车辆间的安全性更高。所以,可以采取更为合理的模式切换线,如图所示


模式切换线可以表述为下式:



上式中,一般取值R表示两车相对速度为0时,理想的车间距,R, C0为两车静止时的理想车距,表示跟车时距,表示前车的车速。

车辆状态位于切换线右上方时,处于速度跟随模式;车辆状态位于切换线左下方时,处于速度跟随模式。

另外,还需要考虑驾驶员设定的期望车速与前方目标车速的关系:如果期望车速小于前方目标车速,车辆应该按照驾驶员的意图行驶,即进入速度跟随模式,不应该跟随前方较快的目标车辆,其余情况下,均按照ACC模式判别正常决策。
  
 

#02
仿真实验验证
 

2.1 实验场景的设计 


根据上文对于ACC系统的设计,设计四个常见的交通场景来验证ACC控制的准确性与激光雷达在ACC系统中的可应用性:

  • 实验场景1:不同车道的车辆切入实验车辆车道前方,一段时间后,又切出该车道;

  • 实验场景2:前方车辆位于实验车辆同车道,距离实验车较远,实验车逐渐接近前车。

基于以上仿真场景的设计,在仿真软件平台搭建实验场景,主要分为以下几个步骤:

(1)道路场景与行驶环境的构建;

(2)实验车辆模型与激光雷达传感器模型的添加;

(3)交通车辆模型的添加与行驶设定;

(4)实验车辆控制算法在Simulink中的搭建。
         

 

       

 


2.2 仿真实验结果与分析 


实验过程中记录车辆的相关参数与激光雷达的探测数据,同时判断激光雷达的探测目标是否位于实验车辆的前方车道内。   

实验中,会设定驾驶员的期望车速与前方车辆的速度(如果有前车),同时设定ACC的模式:1表示速度跟随模式,2表示跟车模式。

实验场景1:


实验刚开始时,激光雷达探测到目标车辆的航向角很大,这是因为目标车辆处于实验车辆的旁边车道内,同时判定0-2.27s时,目标车辆未在实验车辆的前方同一车道内,于2.27s左右切入实验车辆所在的车道,目标车辆在实验车辆的前方同一车道内,又于32s左右时,目标车辆又切出实验车辆所在的车道。


分析实验结果可知:设定驾驶员期望巡航车速为50km/h,目标车辆初始车速为30km/h,最高车速为60km/h。初始0-2.27s时,ACC模式处于1,即速度跟随模式,此时目标车辆处于实验车辆的旁边车道内,本车应加速至巡航车速,但是2.27s时,目标车辆切入实验车辆前方,本车则切换到跟车模式,稳定跟随目标车辆,在大约26s的时候,目标车辆仍在实验车辆的前方同一车道内,但是前方车辆速度超过了设定的驾驶员设定的巡航车速,所以本车的ACC模式切换回1,即速度跟随模式,本车不再跟随目标车辆,而是进行速度跟随控制,稳定的达到巡航速度,目标车辆于32s左右时,切出本车所在车道,并未对本车行驶产生影响。从车间距特性图像中可以看出,期望车间距仅仅在ACC模式为2的时候进行计算,因为速度跟随模式下车间距没有意义。综合上述分析结果,验证了切入--切出工况下ACC控制的准确性与激光雷达在该系统中的可应用性。 
 
实验场景2:


与实验场景设定的一致,目标车辆一直处于本车车辆的前方同一车道内。
          

 

    

分析实验结果可知:设定驾驶员期望巡航车速为50km/h,目标车辆初始车速为30km/h,最高车速为60km/h。0-13s时,ACC模式处于1,即速度跟随模式,此时目标车辆处于实验车辆的同一车道的前方,但是距离很远,并且两车速度较低,所以处于速度跟随模式,本车应加速至巡航车速;在约6s的时候,本车车辆达到巡航车速,并维持巡航车速至13s,此时,控制参数达到了模式切换的标准,ACC模式切换到2状态,即跟车模式,车速平滑过渡到与前车保持一致,在约24s时,前车车速超过了设定的驾驶员设定的巡航车速,所以本车的ACC模式切换回1,即速度跟随模式,本车不再跟随目标车辆,而是进行速度跟随控制,稳定的达到巡航速度。综合上述分析结果,验证了实验场景4设定工况下ACC控制的准确性与激光雷达在该系统中的可应用性。



#03
总  结
 
虽然目前已有很多ACC产品化,但是实现大多基于毫米波雷达的测距功能来实现的,同时,激光雷达是智能车未来发展的必不可少的助力,它可以实现目标的测速与测距,因此,激光雷达极有可能成为今后智能车的标准配件,所以设计了上述基于激光雷达的ACC功能,借助了了激光雷达的测距与测速功能,经仿真实验验证,基于激光雷达的ACC功能完善,适应多种较为复杂的工况,同时对于速度跟随与跟车模式下的控制较为稳定,验证了ACC控制的准确性与激光雷达在该系统中的可应用性。   



/ END /


      

 

          

 

    

汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论
  • 一、引言:Java I/O 的重要性无论是桌面软件、服务器后台,还是移动应用,文件读写和数据传输都是核心功能。Java 提供了丰富的 I/O API,从传统的字节流、字符流到现代的 NIO(Non-blocking I/O)框架,都能满足不同场景的需求。本文将深入解析 Java I/O 的核心机制和实战技巧,涵盖:传统流体系(InputStream/OutputStream,Reader/Writer)文件操作示例NIO 基础与实战高效文件复制与缓冲机制二、Java 传统 I/O:字节流和字符流
    小菜菜编程 2025-06-10 21:57 5184浏览
  • 一、前言Java 除了广泛用于后端开发与跨平台服务,也支持图形用户界面(GUI)的开发。对于需要构建桌面应用、工具软件、图形交互系统的场景,Java 的 GUI 框架(如 Swing、JavaFX)提供了丰富的组件和事件机制。本文将带你入门 Swing GUI 开发,并通过一个实战项目,构建一个简单但完整的 Java 桌面应用。二、Java GUI 技术体系概览Java 支持多种 GUI 开发方式,最常见有:技术特点AWT最早的 GUI,依赖本地组件,跨平台性差SwingAWT 的增强版,组件完
    小菜菜编程 2025-06-10 23:21 6038浏览
  • 在自动驾驶时代奔涌向前的路上,仿真测试早已不再是可选项,而是验证智能驾驶系统安全性、鲁棒性和泛化能力的刚需,如何提升仿真测试的保真度已成为无法避免的重要话题。这正是“数字孪生”出现的时代背景。本文为大家详细介绍如何用传统与前沿结合的数字孪生构建流程,再配合3DGS 的神经网络重建技术,为自动驾驶仿真测试注入真正的“现实之眼”。一、从点云到高精地图的重建依托独家的aiData工具链与aiSim仿真平台,本文建立了一套高精度数字孪生地图构建流程,已经广泛应用于布达佩斯 Kolosy广场、ZalaZo
    康谋 2025-06-11 14:13 225浏览
  • 1.03" CVBS 驱动方案 Micro-OLED显示技术因其高分辨率、高亮度、低功耗和小体积的优势,已成为微显示领域的首选方案。针对Micro-OLED在光学瞄准、夜视成像、工业检测、安防监控及户外探索等终端应用,上海冠显光电(TDO)设计开发了1.03"CVBS驱动方案。这一方案能够实现CVBS信号向Micro-OLED显示屏的稳定转换和显示控制,与市面上大多数光学瞄准应用终端无缝对接,满足行业对高质量、高性能显示解决方案的迫切需求。方案组成型号:TV103F1CSFS02&nb
    冠显光电MicroOLED代理视涯 2025-06-11 16:48 4608浏览
  • 电路图GPIO的中断类型相关API函数应用举例总结电路图在ESP32中内部有完整的控制电路,比如上下拉以及滤波器等,所以我们这里可以直接用一个微动开关连接到地。GPIO的中断类型GPIO_INTR_DISABLE不使能中断GPIO_INTR_POSEDGE上升沿触发GPIO_INTR_NEGEDGE下降沿触发GPIO_INTR_ANYEDGE上升沿和下降沿都触发GPIO_INTR_LOW_LEVEL低电平触发GPIO_INTR_HIGH_LEVEL高电平触发在GPIO中断应用中,一般使用上升沿或
    二月半 2025-06-12 10:11 165浏览
  • 一、前言多线程是 Java 的强大特性之一,它允许程序并发执行多个任务,提高资源利用率和响应能力。无论是 Web 服务、高性能计算、文件下载、图像处理,还是后台任务调度,多线程都是提升效率的利器。本篇文章将深入介绍 Java 多线程编程,包括创建线程、同步控制、线程通信、线程池与实际案例。二、Java 创建线程的三种方式2.1 方式一:继承 Thread 类java复制编辑publicclassMyThreadextendsThread { publicvoidrun() {
    小菜菜编程 2025-06-10 22:35 5465浏览
  • Micro OLED作为下一代微显示技术的核心,广泛应用于AR/VR等HMD、汽车HUD、电子枪瞄、以及工业和医疗等高分辨率近眼显示领域。当前,Micro OLED的市场规模持续扩大,商业化进程不断加速,终端应用厂商急需加快产品验证步伐,抢占市场先机。为助力加速设计和开发,冠显光电推出了TV系列评估套件,帮助客户快速启动相关应用开发,提升验证效率,推动产品从概念到市场的快速落地。冠显0.39" Micro OLED显示解决方案主要包括0.39" 显示屏、FPC及驱动板,是TV系列中最小巧紧凑的一
    冠显光电MicroOLED代理视涯 2025-06-12 09:54 3925浏览
  • 七年前买了个远程控制开关,想想那个时候应该物联网才兴起的时候吧。如今因为控制麻烦且经常出现连接掉线问题,于是给淘汰了。这个设备我是拿来控制吊灯,特别麻烦的是,当晚上关灯后,会有一点灯点亮着,掉线的时候还会闪,想想睡梦中醒来往天花板一看,一个东西在那闪多吓人,关键还是绿色的。而且二次匹配需要打开灯罩,按那个黑色的按钮才能重新配网。种种原因,让我今天给他拆了,结构也简单,拆开外壳就只有一个主板正面正面电路看起来还是很简单的:220V经过整流桥(背面U1),通过变压器将市电转化低压直流电一个继电器,这
    二月半 2025-06-12 14:32 191浏览
  • 一、前言在当今互联网应用中,网络编程是 Java 开发者必须掌握的一项关键技能。无论是构建聊天系统、文件传输、物联网交互,还是服务端 API 通信,Java 的网络编程提供了强大的支持。本文将从基础的 Socket 通信开始,逐步深入到多线程服务器开发,并提供图文实例帮助理解。二、Java 网络通信的基础概念Java 网络编程主要依赖于以下核心类:类名用途Socket客户端通信套接字ServerSocket服务器监听套接字InetAddressIP 地址解析与封装DatagramSocketUD
    小菜菜编程 2025-06-10 23:20 5837浏览
  • 检测电磁铁性能需要系统性地考察多个关键指标。首先通过吸附测试评估磁力强度,可定量测量最大吸附重量或定性观察衔铁动作的灵敏性。电气参数检测包括测量线圈电阻值是否正常,以及通电后电流是否稳定在额定范围内。动态性能方面需测试响应时间和释放特性,记录通电吸合与断电分离的时效性。环境适应性验证要模拟电压波动和高温条件,观察磁力稳定性变化。安全检测环节必须检查绝缘状态和接线可靠性,运行中注意异常发热、异响等故障征兆。日常维护应保持磁极面清洁,定期复测线圈电阻。专业应用场合建议使用磁通计等仪器精确测量磁场参数
    锦正茂科技 2025-06-12 11:20 3821浏览
  • 夸克发布首个高考志愿大模型,为考生提供了智能化、个性化的志愿填报服务,这一创新对考生群体和传统报考机构产生了截然不同的影响。对于考生而言,夸克高考志愿大模型无疑是一大利好。该模型整合了教育官网、省招生办官网等权威信息源,确保数据准确可信,同时将高校毕业生就业信息、产业趋势等纳入知识库,为考生提供更全面的参考。通过深度搜索、志愿工具和志愿报告三大服务,夸克能精准理解考生需求,提供从专业适配性、地域优势到就业前景的全方位分析,并生成专属志愿报告和多种填报策略。这种智能化、个性化的服务大大减轻了考生和
    curton 2025-06-12 17:24 4039浏览
  • 近年来,随着全球能源转型和清洁能源行业的快速发展,户用光伏系统的装机量正呈逐年上升态势。同时,为了应对居民用电价格的显著上涨以及峰谷电价差异的持续扩大,在户用储能单元可大幅降低用电成本的背景下,各国正在大力扶持光伏配储政策,户用光储系统已逐步成为普通家庭应对电价波动与电网停机的经济之选。据高工产研储能研究所(GGII)统计数据显示,2024年全球户用储能装机规模约14GWh,GGII预计2025年全球户用储能市场规模将以25%的增速发展,装机规模将达到17.5GWh,整体增长趋势显著。而这也从侧
    华普微HOPERF 2025-06-12 14:16 307浏览
  • 在微孔雾化(泛指100-180KHz陶瓷片,雾化香氛/补水/药液)设备的工程设计和批量生产中,一直存在一个共性的问题:雾化量的波动。 雾化量,准确来说应该成为雾化速率,也就是单位时间内雾出的液体量(重量或者体积),常用的有两种单位:毫克/秒(mg/s), 以及毫升/分钟ml/min,对应的如果雾化水的话,3毫克/秒的雾化速率也就等于0.18毫升/分钟。 雾化量的波动,跟工程设计前期的选型和性能确认,有联系但是又有区别,因为前期的设计重点主要集中在“满足性能”,比如雾化量大小、
    Loximonline 2025-06-10 11:44 224浏览
  • 磁学为啥神秘?1.磁学应用不直观。2.电感器使用量相对少。3.深度阐述书籍资料比较少。主要内容:第一章介绍磁学的基础概念,电磁感应,磁心损耗,气隙,趋肤效应,临近效应。第二章介绍磁性元件 电感原理与制造工艺,磁珠,变压器原理。第三章介绍应用电路 LC滤波器,谐振电路,射频中电感和变压器的应用,开关电源中变压器的应用。第四章介绍磁能的形态及转换,主要讲磁能存在哪里?转换过程,转换条件。第五章简介电感储能的相关问题,纠正常识性错误。第六章介绍变压器的常识性知识,如功率与初级匝数的关系。本书的阐述角度
    cow74562014 2025-06-10 22:41 264浏览
  • 一、前言文件处理是 Java 应用程序中最常见、最实用的功能之一,无论是读取配置文件、处理日志、批量处理 CSV,还是备份、压缩文件,都离不开对文件的高效操作。本篇文章将系统讲解 Java 文件操作的各个方面,包括文件读取、写入、复制、删除、压缩等,并提供实际代码示例。二、Java 文件与目录的基础操作2.1 使用 File 类检查文件属性java复制编辑import java.io.File; publicclassFileCheck { publicstaticvoidmai
    小菜菜编程 2025-06-10 22:34 5274浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦