信号与系统-时域分析-微分方程求解.茅塞顿开版

原创 云深之无迹 2024-09-21 02:12

不是原创,就是把我学习中帮助理解的东西集合在一起,我觉得这个东西我不写出来,绝对不会有人向我这样扣的细的。记录也好,复习也罢。

先说为什么我们会这个响应念念不忘?

在特定的时空中研究具体的系统,如果时空是静止的,这个世界将很难想象,所以,系统的状态通常都是时空的函数,即随着时间、空间而变化,而研究自变量和因变量变化关系的数学工具正是导数,各变量导数之间的关系受自然规律约束,即形成微分方程。所以,微分方程就概括了系统的全部,就是系统的数学结构,解出来就知道系统对外部的信号如何响应的。

  1. 零输入响应:系统固有的响应,以及没有激励进来之前的能量
  2. 零状态响应:接收外界激励
  3. 完全响应:上面两个的叠加,本身和对外界的反应
  4. 单位脉冲响应:这个就是求系统本身的响应的
  5. 受迫(强迫)响应:特解,由输入的激励信号有关系。
  6. 自然(自由,固有)响应:自然响应是全响应中所有特征模式项的组合,齐次解的函数形式仅仅依赖于系统本身的特性
  7. 特解包含了特征模式,而且即使结合初始条件也无法确定系数
出于太晚的关系,这个强迫和自由我是没有写的,反正就是学会了已经。

这里需要补充很多文章中出现的概念:

特解往往称为受迫响应;特别的解,特别在符合当下激励项的解。
齐次解往往称为自然响应,也就是系统自己带的

“初始松弛”十分形象、十分贴切,比如你要研究一个弹簧拉伸长度与受力之间的关系,通常而言,如果外力为零,弹簧就应该处于松弛的状态。

也就是系统放在哪里,没干扰的情况。

线性常系数微分方程和线性常系数差分方程往往只是输入-输出的一种约束关系,而非显式函数表示

离散时间系统的单位脉冲响应分为有限长无限长,对应的系统分别称为FIR系统IIR系统

系统的特征多项式

这个式子等于0 的时候是特征方程,里面解出来叫系统的特征根。

然后就可以表示0输入响应为:

很明显也是特征根的线性组合

模式是有e,也就是指数函数的,上面的参数才是特征根

第一步写的真装逼,其次文章里面我没有写变换域,后面会有的。

两个约束

无非就是CLR元件,就这样就写出来了

经典法很固定,谁也可以算出来,后面的激励是固定的两种才可以求解

这个就更清晰啦

一般就是解出来是这样的

这种经典时域法也叫强迫响应,因为是x(t)位置,然后就是后面的激励是幂函数和指数函数,只有唐老师说明白了为什么这样的方程可以解出来。

以上都叫受迫响应,下面是唐老师的

可以看到图表里面有1,2他们的形式一样

受迫响应,里面是没有指数函数的项的,就是上面图里面的不含有特征模式

这PPT有问题哇,写错了

所以设置成这样的特解

就是这样的

因为是2阶系统,所以有两个约束,也就是0和导数0

因为经典的时域办法只能处理这样的激励项,如果这个信号变化,后面就是要重新的计算,如果初始值也变化,也就是后面的解方程也是需要在计算的,最后这就是纯纯的数学办法,不是很好回答物理上面的直观解答。

其次,得到的是完全响应,而无法分解为由内部条件和外部条件分别引起的分量。

我觉得经典时域法应该是差不多就这样了,接下来就完成卷积法。这个想法其实非常的自然,我们的难点就是求这个外部信号带给系统的响应,我们自然想用前面的东西,卷积正好就是,使用系统的响应和激励一卷积就求出来ZS状态的响应。

卷积法

不管是什么方法,我们都是要找到0输入和0状态两个解,然后加起来就行。因为0输入是系统蕴含的特性,所以可以使用经典时域法里面的求齐次方程解的办法。

也就是这个PPT里面说的内容

这个前部分简单

一般解出来的就是这几个结果,高数书也是这样写的

难得是这个0-的部分

你觉得这个0-,是什么东西,它在0之前就有,所以是:系统对内部条件的响应,零输入响应

题里面说的就是这样的情况,就是在信号来之前,我们对系统的状态是知道的,也就是0-,初始条件。

我们来好好的理解一下这段话的核心内涵,首先要时刻知道一点,系统现在的响应的能量来自于哪里?

看第一个,如果是t=0输入的,0-的时候,肯定就是没有外部的能量干扰,然后0+的时候能量有了,外部输入就起作用了。

第二个是,一般我们指0-是初始条件,因为这结合第一个说就是,0-的时候其实就是系统原有的响应(也可以说能量,但是就方便理解,可能不多说的),也就是说题里面给的0-,是初始值的意思。

第三个,如果这个系统没有外部能量输入,那这个0-,0+是一样的,因为在0+,系统没有变化。

最后一个,全响应是有俩项的,最后激励的加入是导致0+以后系统的充能的。

所以记住一点,全响应的时候是不同的,还要知道他们两者之间的独立性

此时看题,就很明白了,要的是0输入,ZI,那初始值就是这样,直接计算就好了。

ZI的值,后面一项是为0的,所以就没有用,即使难也没有用到

这个是复根的,一共三个,完美了,全网最佳的文章出现了

接下来是ZS的求解

叽叽歪歪说了这么多的意思就是:

可以把后面的激励项和系统的响应做卷积

直接 推导好不好 

先不说里面的算法,反正就是这样的纯联系,都给你了,不卷积等什么

还记得我上篇写的东西吗?

后面的函数就是脉冲信号

最后一个,单位的冲激信号

信号与系统漫谈-基础回顾

一个线性时不变系统的特性可以完全由它的单位脉冲响应决定,这句话有两层含义:
  • 一般而言,此结论仅适用于线性时不变系统;
  • 线性时不变系统的特性完全由单位脉冲响应决定。

这个是PPT的写法,这就是教科书,你得感悟多久?知识还是没把握住

唐老师的内容分为两个部分

第一部分是对微分方程求解参数形式的限定,后者是解释了脉冲对系统的影响。第二句话很重要,是写单位脉冲的响应其实是在0-的时刻,也就是说已经影响到了0输入的值,这样就可以保证所有的初始状态都是0的情况下开始注入冲击。

但是就很快,就在0的时候搞一下,活好不粘人。接着就是系统开始消化这能量,开始响应,所以就是又开始有了系统的特征模式的组合。

这个是2.17  -  线性常系数微分方程

第一个式子很简单,就是要考虑=0的时候系统里面的事情。接着就是求解方程了,x是一个连续时间的冲击信号,f是响应,最高次的系数也简单,前面是求和符号,肯定最高就是几次求和,右边也一样,要想左右一样,肯定是系数就一样的。右边就是冲击信号的系数,也就是

也就是说明了,最后响应式子里面冲击信号的系数是可以通过这样前后匹配的方式求得,我觉得我讲明白了,不知道你有没有看明白,这可是最难的东西了。

这是是n>m,直接就是一个特征值的线性组合了

一开始PPT下面还有一个n≤m,要平衡就要多一个冲击的导数,和后面一约,就变成上面的了,这就是加一项的处理方法,其实就是个数学的恒等式,简单的咧。

判断,题要什么,是冲击响应,然后就是f和y换成响应和冲击,接着是求解方程,判断m和n的关系,代入原方程,求解。

n和m其实是N,M就是最高项的阶数,平衡状态是一一对应的


唐老师讲了这两个MN系数之间的关系和取法。

说明了系统的作用,以及MN参数对系统的影响。

再一次说了,0输入响应,就是系统自身蕴藏的能量,与外界无关。

0状态是所有都为0,就是内部的状态也是0,这个时候输入一个能量来响应。

太晚了,脑子不转了。

评论
  •   再次拆开来,干脆放上电池看看,呵呵,转呀!  嘀嗒嘀嗒声好听,小齿轮转啊转尊,挺有活力啊!  莫非是活动关节受阻?  仔细,用放大镜观察,真是的!轴承与转杆接触位有污垢。  拆解下来,用酒精仔细清洗干净,看看纸上是刷子擦下来的污迹。  顺便把PCB、其他可能的零部件,也用酒精擦一擦  清洗清洁后的的各个零部件。  再看看电极接触点,有磨损,露出了底下的铜金属。  想想,用焊锡填补吧!  金属表面不太接受,总算有了一点焊锡,试试看吧!  再组装回去,装上电池,不转动!  再拆开来,到底是那个零
    自做自受 2025-06-21 12:19 2484浏览
  • 当下,智能手机市场越来越卷,各大品牌纷纷绞尽脑汁,试图凭借各类卖点抢占市场份额。华为首款全系标配HarmonyOS 5.1的高端直屏旗舰Pura80系列亮相后,热度一路飙升,迅速开启市场狂飙模式。该机于6月5日开启预约,截至6月11日,华为商城上华为Pura 80 Pro和华为Pura 80 Pro+预约数已达28.4万。近日,华为Pura 80系列终于开卖了!开售后,Pura 80系列手机迅速在全国多地掀起抢购热潮,北京、上海、深圳等地的华为旗舰店外出现排长队抢购新机的场面。难道就因为余承东说
    用户1742991715177 2025-06-22 11:28 187浏览
  • 本文将介绍基于米尔电子MYD-LT536开发板(米尔基于全志T536开发板)的多协议物联网关方案的开发测试。摘自优秀创作者-ALSET米尔基于全志T536开发板为了充分的应用该开发板,结合T536处理器的特点,这里进一步的进行软件开发,充分利用开发板的硬件资源,完成业务产品的需求。这里以物联网多协议网关应用为研究为目的,首先建立基础的从各个硬件设读取硬件端口的数据,并且通过SOCKET由网络收发的过程。在一般开发物联网网关时可以采用MQTT,MODBUS等协议库,作为标准的通讯,来解决硬件型号采
    米尔电子嵌入式 2025-06-20 15:14 65浏览
  • 在电力系统中,固态继电器和驱动隔离器像两位“电力守护神”,默默地确保电力设备的安全与稳定运行。它们通过高效、可靠的性能,保障了电力设备在各种环境下的正常工作。固态继电器是电力控制中的关键组成部分,利用半导体器件来实现电路的开关控制。与传统的机械继电器相比,固态继电器具有更快的响应速度、更长的使用寿命、以及没有机械噪音等优点,成为了工业自动化、家用电器等领域中的核心组件。与此同时,驱动隔离器则在电力系统中承担着重要角色。通过电气隔离技术,驱动隔离器有效地将控制信号与高电压电路隔离,确保控制电路免受
    腾恩科技-彭工 2025-06-20 17:36 88浏览
  • 要有效预防电磁铁损坏,需要从电气防护、环境控制、操作规范和定期维护四个方面采取综合措施。在电气防护方面,要严格控制工作电压,确保其与额定值的偏差不超过±15%,对于高压电磁铁还需加装短路保护装置。同时要做好绝缘保护,shou次使用前必须测量绝缘电阻,在潮湿环境中要增加检测频率。环境控制同样重要,要根据工作环境的温湿度条件选择合适的电磁铁型号,ji端环境下要采取特殊防护措施。运输过程中要做好缓冲包装,避免机械损伤。操作时要注意控制通电时间,监测线圈温度,避免超负荷运行。多台电磁铁同时使用时,要保证
    锦正茂科技 2025-06-23 11:35 223浏览
  • 电磁铁损坏通常由电气、机械、环境和操作等多方面因素共同导致。电气系统异常是zui常见的原因,包括电压超标和绝缘失效。电压偏离额定值15%以上容易造成线圈过热烧毁,而潮湿环境则会导致绝缘电阻骤降,引发击穿故障。机械结构问题也不容忽视,铁芯卡滞、异物堵塞以及超负荷运行都会加速部件磨损,影响电磁铁寿命。环境因素对电磁铁的影响主要体现在温湿度和散热条件上。高温环境会加速绝缘材料老化,潮湿则可能导致非防水型号的性能下降。此外,散热设计缺陷或连续通电时间过长都会使线圈温度异常升高。操作和维护不当同样会引发故
    锦正茂科技 2025-06-23 11:11 246浏览
  • 摘要核工业安全监测对压力传感器的精度、稳定性及抗极端环境能力提出了严苛要求。石英谐振压力传感器凭借其基于石英晶体压电效应的独特工作原理,在高精度测量、抗辐照、宽温域适应性等方面展现出显著优势。本文系统解析石英谐振压力传感器在核工业中的核心应用场景,包括反应堆压力容器监测、管道泄漏检测及放射性物质运输监控,并结合晨穹石英谐振压力传感器的技术特性与实际案例,论证其在核安全领域的不可替代性。研究表明,晨穹 RPS01 系列石英绝压压力芯体通过全金属密封封装、双通道温度补偿及 AI 自校准算法
    传感器晨穹 2025-06-23 10:43 198浏览
  • 一、引言自5G正式商用以来,全球通信产业经历了前所未有的变革。5G以其超高带宽、超低时延、海量连接的能力,使得智能制造、自动驾驶、AR/VR、物联网等新兴产业得以快速落地。但随着5G的广泛应用,其在实际部署过程中仍面临一系列挑战:网络覆盖有限、边缘性能不足、上行能力偏弱等问题日益凸显。为解决这些瓶颈并为6G的演进奠定基础,3GPP于Rel-18阶段提出了“5G Advanced(5G-A)”标准。5G-A不仅是5G的增强版本,更是迈向6G的关键过渡技术,其将深度融合通信、感知、智能、控制、安全等
    用户1750544933504 2025-06-22 21:15 3050浏览
  • 一、 平流层超压气球:极端环境下的监测挑战  平流层超压气球长期悬浮于18-40公里高空,持续承受-70℃至+85℃的剧烈温变、不足地面10%的低压环境(30km高度约10hPa)及强宇宙辐射。传统MEMS压阻传感器在此环境下易出现零点漂移、灵敏度衰减,导致高度控制失准或科学数据失真。  典型案例:2021年印尼弗洛雷斯海7.3级地震监测中,平流层气球需在3000公里外检测次声波引发的微帕级压力波动——相当于海平面气压的百万分之一。此场景对传感器的分辨率与抗干扰能力
    传感器晨穹 2025-06-23 13:58 296浏览
  • /*************  功能说明    **************本例程基于AI8051U为主控芯片的实验箱进行编写测试.使用Keil C251编译器,Memory Model推荐设置XSmall模式,默认定义变量在edata,单时钟存取访问速度快。edata建议保留1K给堆栈使用,空间不够时可将大数组、不常用变量加xdata关键字定义到xdata空间。下载时, 选择时钟 24MHZ (用户可自行修改频率).*******************
    丙丁先生 2025-06-21 07:36 2713浏览
  • 文/Leon编辑/cc孙聪颖2025年刚刚过半,中、韩面板企业正展开新一轮的专利大战。据韩媒报道,LG Display(以下简称“LGD”)于当地时间6月13日,向美国得克萨斯州东区地方法院提起诉讼,指控天马微电子侵犯其7项专利。据悉,LGD在诉状中提及专利涵盖OLED面板、车载LCD(液晶)面板、移动LCD面板等,诉求则是要求天马通过正当手段获得专利许可。(详情见:抱紧苹果的大腿,LGD单季度扭亏为盈)《华尔街科技眼》就该事件联系了LGD和天马微电子的相关工作人员,均未获得回应。这不是中、韩面
    华尔街科技眼 2025-06-20 17:44 139浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦