硬件影响软件,软件又如何利用硬件?

大鱼机器人 2024-11-14 14:47
曾经遇到一个问题,两个芯片,同样的Cortex-A53,同样的总线,同样的频率,同样的缓存和内存大小,跑同样的内存测试,性能差了40%。而经过优化之后,反超了20%。想搞清楚为什么,就需要知道,访存路径上有哪些影响因素?
系统瓶颈可能有哪些地方?性能优化可以怎么做?等等。最近,这些问题终于有了答案,我把它们写下来,给我自己一个总结,也给有同样困惑的人一个解释。
文章会很长,我想从CPU怎样访问内存这样一个既简单也复杂的问题入手,自问自答,并逐步引入更多的疑问和答案,最终把访存通路上每一个环节的硬件结构,特征,性能分析以及未来的发展趋势都加进去。很多概念,像缓存,同步,一致性,壁垒,锁等,并不复杂,可是他们是怎么在ARM SoC中实现的,效率又如何,我觉得还是有必要搞清楚。最后,我会重新分析文章开头的问题。这些知识并不是在重复一个处理器或者SoC的结构,而是分析硬件会怎样影响软件,软件如何利用硬件并且,我是程序员,从来没有做过芯片设计,所有的知识都是从程序员的角度出发的,所以软件工程师们应该能看懂。
在开始之前,先说些轻松的话题。
芯片厂商向客户介绍产品,从硬件角度说的最多的就是功能,性能,功耗和价格。功能这个主要就是看芯片提供了什么接口,比如闪存,内存,PCIe,USB,SATA,以太网等,还看内部有什么运算模块,比如浮点器件,解码器,加解密,图形加速器,网络加速器等等。性能,对CPU来说就是的测试程序能跑多少分,比如Dhrystone,Coremark,SPEC2000/2006等等。针对不同的应用,比如手机,还会看图形处理器的跑分;
又比如网络,还会看包转发率。当然,客户还会跑自己的一些典型应用程序,来得到更准确的性能评估。功耗就是在跑某个程序的时候,整个芯片的功率是多少瓦。通常,这时候处理器会跑在最高频率,但这并不意味着所有的晶体管都在工作,由于power gating和clock gating的存在,那些没有被用到的逻辑和片上内存块并没在完全耗电。我看到的芯片公司给出的处理器最大功耗,通常都是在跑Dhrystone。
这个程序有个特点,它只在一级缓存之上运行,不会访问二级缓存,不会访问内存。这样得出的其实并不是真正的最大功耗。但是从实际经验看,没有应用程序能让CPU消耗更高的能量,所以这么测量最大功耗也没什么错。当然,作为整体的芯片功耗,还得包括各种加速器和接口,尤其是会被用到的模块。
芯片公司宣传产品的时候,会有各种各样的玄机在里面,任何一家都会把好看的数据放上来。这些数据大都是真实的,可是怎么摆这些数据是一门技术活,摆的好能误导不少观众,而x86,ARM,MIPS,PowerPC, ARC阵营的各家产品经理和市场人员都是这方面的好手。我会在深入介绍之后专门列一章说这些窍门。
在设计SoC的时候,性能,功耗和价格就转换成了PPA。啥是PPA?其实就是性能,功耗和面积。
其中,性能有两层含义。在前端设计上,它指的是每赫兹能够跑多少标准测试程序分。设计处理器的时候,会有个多少级流水线的说法。通常来说,流水线级数越多,芯片能跑到的最高频率越高,这个大家应该都知道。可是并不是频率越高,性能就越高。这和处理器构架有很大关系。典型的反例就是Intel的奔腾4,30多级流水,最高频率高达3G赫兹,可是由于流水线太长,一旦指令预测错误,重新抓取的指令要重走这几十级流水线,代价是很大的。而它的指令预测又极大依赖于编译器来优化,结果当时编译器又没跟上,导致它总体性能低下。
你看MIPS或者PowerPC的处理器频率都不高,但是每赫兹性能相对来说还不错,总体性能就会提高一些。所以看性能要看总体跑分,而不是每赫兹跑分。前一段时间龙芯在宣传的时候就钻了这个空子,号称每赫兹都赶上至强了,但是也就能跑个1Ghz多,而16核至强可以到将近3Ghz。
性能的另外一个含义就是指频率,这是从后端设计角度来说的。通常后端的人并不关心每赫兹能达到多少跑分,他们只看芯片能跑到多少频率。频率越高,在每赫兹跑分一定的情况下,总体性能就越高。
请注意对于那些跑在一级缓存的程序,处理器每赫兹跑分不会随着频率的变化而变化。当然如果考虑到多级缓存,总线和外围接口,那肯定就不是随频率线性增加了。系统级的性能问题,我会在以后慢慢展开。
那哪些因素会影响频率?就算只从后端角度考虑,答案也很多。我并不是做后端和制程的,只能把道听途说的写下来,仅供参考。
首先,受工艺的影响。现在先进的半导体工厂就那么几家,Intel,台积电,三星,联电,格罗方德。拿台积电来说,它目前提供16纳米的工艺,其中还分了很多小结点,比如FFLL++和FFC。每个小节点各有特点,有些能跑到更高频率,有些功耗低,有些成本低。在不同的工艺上,芯片能跑的最高频率不同,功耗和面积也不同。
其次,受后端库的影响。台积电会把工艺中晶体管的参数抽象出来,做成一个物理层开发包PDK,提供给eda工具厂商,IP厂商和芯片厂商。而这些厂商的后端工程师,就会拿着这个物理层开发包,做自己的物理库。物理库一般包含逻辑和memory两大块。根据晶体管的channel length,会有不同特性,适合于不同的用途的单元cell。而怎么把这些不同特性的库里的cell,合理的用到不同的前端设计模块,就是一门大学问。
一般来说,channel length越短,电子漂移距离越短,能跑的频率就越高。可是,频率越高,功耗就越大,并且是指数上升。除了cell之外,还会有9T/12T这种说法,这里的T是Track,就是cell的高度。T越大,电流越大,越容易做到高频,相应的面积也越大。
接下来,受布局和布线的影响。芯片里面和主板一样,也是需要布线的。每一层都有个利用率的说法,总体面积越小,利用率越高,可是布线就越困难。在给出一些初始和限制条件后,EDA软件会自己去不停的计算,最后给出一个可行的频率和面积。
再次,受前后端协同设计的影响。比如,某个访问memory的操作,如果知道处理器会花多少时间,用哪些资源,就可以让memory的空闲块关闭,从而达到省电的目的。这种技巧可能有上千处,不自己设计处理器是没法知道的,哪怕你有RTL代码。
再往上,就是动态电压频率缩放DVFS。这里需要引入功耗的组成概念芯片功耗分成动态和静态两部分,静态就是晶体管漏电造成的,大小和芯片工艺,晶体管数,电压相关,而动态是开关切换造成的,所以和晶体管数,频率,电压相关。具体公式我就不列出了,网上有。控制动态功耗的方法是clock gating,频率变小,自然动态功耗就小。控制静态功耗的方法是power gating,关掉电源,那么静态和动态功耗都没了。
还可以降低电压,那么动态功耗和静态功耗自然都小。可是电压不能无限降低,否则电子没法漂移,晶体管就不工作了。并且,晶体管跑在不同的频率,所需要的电压是不一样的,拿16nm来说,往下可以从0.9V变成0.72V,往上可以变成1V或者更高。别小看了这一点点的电压变化,要知道,动态功耗的变化,是和电压成三次方关系的。1V和0.7V,电压差了50%,动态功耗可以差3.4倍。
我看到过的数据,在500Mhz以下,处理器的动态功耗是小于静态功耗的,变成3GHz的时候,远高于静态功耗。
再往上,就是软件电源管理,控制功耗了。芯片设计者把每个大模块的clock gating和power gating进行组合,形成不同的休眠状态,软件可以根据温度和运行的任务,动态的告诉处理器每个模块进入不同的休眠状态,从而在任务不忙的时候降低功耗。这又是一个很大的话题,以后再展开。
从上面我们可以看到,功耗和性能其实是和在一起的。而芯片设计者可以用不同的工艺和物理库,设计出最高可运行频率,然后软件控制芯片动态运行频率和功耗。
那面积呢?其实也是相辅相成的。由于针对不同的逻辑,memory和布线,选用了不同的物理库cell,不同的track,形成的芯片面积也会不一样。
通常来说,越是需要跑高频的芯片,所需的面积越大。频率差一倍,面积可能有百分之几十的差别。可别小看这百分之几十,对晶体管来说,面积就是成本,晶圆的总面积一定,价钱一定,那单颗芯片的面积越小,成本越低,并且此时良率也越高。
芯片成本除了制造费,还来自于授权费,工具费,流片费,运营开销等,通常手机处理器这样复杂的芯片,没有上千万美元是不可能做出来的。就算做出来,没有卖掉几百万片,那是肯定亏的。
最后还想提下ARM的大小核设计。其最初的目的是想设计两组核,小核每赫兹性能低,面积小,跑在低频;大核每赫兹性能高,面积大,跑在高频。
运行简单任务,大核关闭,小核在低频,动态功耗低,静态功耗占上风,并且由于面积小,总体功耗更低。而大核用高频运行复杂任务。
和x86的单纯调节电压频率比,增加了一点低频小核面积,和整个芯片的面积比,其实没多多少。
那为什么不让小核跑在高频运行复杂任务呢?理论上,由于每赫兹性能低,对于相同的任务,小核必须跑在比大核更高的频率才能完成,这就意味着更高的电压。此时,动态功耗占上风,并且和电压成三次方关系。最终的功耗会高出大核不少。此外,我们前面已经解释过,小核要跑在高频,面积会增大不少,可能比大核还要大。
我们从里面可以看到存在一个平衡点。这个平衡点并不好找。拿A53/A57在28nm上举例,当它们跑在1.2Ghz的时候,功耗可能差两倍,性能却只差50%。而平衡点可能要达到2.5Ghz。
事实上,很多手机芯片的大小核都是使用同样的处理器,跑在不同高低频率。
所以,设计芯片很大程度上就是在平衡。影响因素,或者说坑,来自于方方面面,IP提供商,工厂,市场定义,工程团队。水很深,坑很大,没有完美的芯片,只有完美的平衡。
封面图

声明:

本文转载自最后一个bug。如涉及作品内容、版权和其它问题,请联系删除!


大鱼机器人 一个专注于机器人技术,单片机,嵌入式系统,智能家居,智能设备,PCB设计,IT最新动态的自媒体。此外,还有海量学习资源等你来领取。作者:张巧龙,个人微信号:well_xiaolong。欢迎关注公众号,名称:大鱼机器人,公众号ID:All_best_xiaolong
评论
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 52浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 85浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 144浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 79浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 100浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 90浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 69浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 51浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 128浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 62浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 58浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 88浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 546浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦