源来如此|用于电动汽车车载充电器的CLLLC与DAB比较

原创 德州仪器 2025-01-25 11:02

点击蓝字 关注我们



欢迎来到《电源设计小贴士集锦》系列文章



本期,我们将为大家比较

电动汽车车载充电器 CLLLC 与 DAB

的相关性能与效果



为了优化电动汽车 (EV) 的电源,车载充电器 (OBC) 必须高效、轻便、小巧。电动汽车重量减轻后,也需要更低的功率来驱动,从而提高整体效率。


OBC 需要支持适当的电网到车辆 (G2V) 电压和当前的电池充电算法;因此,它可以作为电网和电动汽车之间的功率调节接口(图 1)。此外,它必须能够通过车辆到电网 (V2G) 供电,为电动汽车补充峰值容量可能波动的可再生能源。


图 1. OBC 需要支持适当的 G2V 电压并通过 V2G 供电


为方便电网和电动汽车内的高压电池连接,需要一个电磁干扰 (EMI) 滤波器、功率因数校正 (PFC) 和一个隔离式直流/直流功率级。图 2 展示了此架构。


图 2. 这个简化原理图显示了 OBC 如何作为电网和电池之间的接口


本次讨论的范围仅限于直流/直流级。截至撰写本文时,直流/直流级的两种常见选择是电容-电感-电感-电容 (CLLLC) 和双有源电桥 (DAB) 拓扑(图 3 和 4)。这两个选项都可以实现小尺寸解决方案,并满足必要的 G2V 和 V2G 功率需求


图 3. 该原理图显示了 CLLLC 的基本拓扑


图 4. 该原理图显示了 DAB 拓扑


更大限度地提高 OBC 性能并减小其尺寸

为了理解这两种拓扑选项如何影响 OBC 的尺寸和性能,本文进一步将范围限制在电池充电运行阶段(或 G2V),考虑如何通过提供开关可承受的最大电池功率来更大限度缩短充电时间。例如,请考虑在以下工作条件下运行的开关:


• PDISS = 20W

• ϑJA = 3°C/W

• TA = 65°C


根据公式 1,开关的 TJ = 125°C:

TJ=PDISS⋅ϑJA+TA (1)


此设计中的开关不能承受高于 125°C 的温度;因此,该条件代表 OBC 在不影响开关性能的情况下可为电池提供的最高功率级别。目标是更大程度地降低开关中的功率耗散,并尽快为电池充电。


有两大因素决定了开关中的大部分功率损耗方根 (RMS) 电流和开关保持零电压开关 (ZVS) 的能力


鉴于其低电容及快速导通和关断特性,德州仪器 (TI) 的 GaN 开关能够使转换器运行时的开关频率比硅片的更高。更高的工作频率直接影响无功元件的尺寸,并实现更小的变压器、电感器和电容器。本文首先为 DAB 和 CLLLC 建立基准设计,然后探讨如何增强电路来扩展转换器的 ZVS 范围。


基准 DAB 和 CLLLC 性能比较

表 1 概述了 OBC 的基本要求。


表 1. OBC 电源要求


为 DAB 和 CLLLC 创建详细的设计有助于确定更可行的储能回路设计。设计过程超出了本文的讨论范围;然而,电路仿真最好能够充分地估算开关中的损耗,并验证与总体功能的符合性。本文将仿真器配置为在不同的功率级别以及输入和输出电压下以批量模式运行,并测试了不同的 DAB 和 CLLLC 电感、电容和匝数比等值。在每次仿真运行中,本文都会收集有关 VIN、VOUT、开关功率、RMS 电流和开关 ZVS 条件等参数的数据。表 2 总结了两种优化的拓扑设计。


表 2. DAB 和 CLLLC 优化设计


图 5 突出展示了各仿真结果。虽然每个拓扑中有八个开关,但图表仅绘制了功率损耗最高的开关。对于每个开关,都有三个图。第一个是开关中的总损耗。第二个是流经开关的 RMS 电流。最右侧的第三个图展示了特定 GaN 开关开启时最坏情况下的漏源电压。这是 ZVS 损耗量的关键指标;该电压越高,相应开关中的损耗越大。因此,开关的 RMS 电流及其维持 ZVS 的能力决定器件的主要功率损耗


图 5. 仿真结果显示了 CLLLC 和 DAB 的 RMS 和 ZVS 基本情况


通过仔细研究上述数据,可以明显地看出 CLLLC 能够在更宽的运行范围内维持 ZVS。因此,增强型 ZVS 有助于降低 CLLLC 开关中的功率损耗。话虽如此,但在 6.6kW 运行功率下,DAB 具有卓越的性能,这得益于它在大部分范围内具有良好的 ZVS 和更低的 RMS 电流。这些观察结果建议寻找一种方法来改进 ZVS,而不对 RMS 电流产生不利影响。


利用换向电感器提高 ZVS

图 6 和图 7 展示了与图 3 和 4 相同的 CLLLC 和 DAB 电路,其中在拓扑中添加了额外的电感器(以黄色突出显示),以便提供在更宽的工作范围内维持 ZVS 所需的额外电流。现在,假设有一种情况,即这些额外的电感器始终可以正常工作。


图 6. 该原理图显示了带换向电感器的 CLLLC


图 7. 该原理图显示了具有换向电感器的 DAB


为便于参考,表 3 列出了新增电感器的值,其他储能回路参数与上表相同。


表 3. 具有换向电感器 (LC) 值的 DAB 和 CLLLC 设计


图 8 展示了重复图 5 中的仿真后的结果。


图 8. 每个电路的 RMS 和 ZVS 结果显示了 LC 的影响


在这种情况下,请注意 DAB 能够在整个工作条件范围内实现全 ZVS。GaN 开关的 VDS 在开通时始终为 0V 这一事实清楚地说明了这一点。CLLLC 虽然无法实现完整的 ZVS,但能够明显改善 ZVS。不过,还要注意,ZVS 的改善会显著降低两种拓扑中的 RMS 电流。仅从功率损耗来看,DAB 转换器似乎在大部分范围中都具有优势。


言归正传,本文将比较图 8 和图 5,您会发现在某些情况下换向电感器实际上会增加损耗。这就引出了一个问题:是否有可能创建一种混合方法,将图 5 和图 8 中所示的损耗降到最低?


尽量减少总损耗:一举多得

增加换向电感器可实现更广泛的工作条件,其中转换器可保持 ZVS。当转换器无法保持 ZVS 时,这种做法具有巨大优势。换向电感器的问题在于,它只会在无 ZVS 时改善损耗。如果转换器已经处于 ZVS 中,则换向电感器会因电流增加而影响运行,从而导致开关中的欧姆损耗更大。


这个思维过程产生了一种混合测试方法,其中换向电感器在较重负载下保持关闭状态,在较轻负载下开启。图 9 显示了重复使用此方法进行仿真后的结果,这使设计能够利用每种拓扑的较低 RMS 电流和重负载下的自然 ZVS 能力。


为了防止开关中出现不需要的 RMS 电流或解决方案尺寸,本文只是谨慎增加了足够的换向电感和工作时间,以适应开关的热范围。请注意,DAB 转换器不能在工作范围内实现全 ZVSZVS 得到了很大改善,但仅在需要时保持在上述的 20W 开关目标范围内


图 9. 这些是使用混合方法获得的 RMS 和 ZVS 结果


为了更好地体现各种权衡因素,图 10 总结了每种情况的功率损耗。您可以看到在开关中的功率损耗方面,DAB 转换器具有明显优势


图 10. 每种情况下的功率损耗摘要有助于直观显示各种权衡


为了更好地说明这两个转换器之间的性能,图 11 更改格式重新绘制了图 10 中所示的数据。该图显示了假设开关不能安全地耗散超过 20W 的功率,每个转换器可提供的最大功率。请记住,20W 表示开关可承受的最大损耗且仍保持结温低于 125°C


图 11. 该图显示了每个转换器可提供的最大功率


CLLLC 更好,还是 DAB 更好?

图 11 中的蓝线在红线上方证明了 DAB 转换器能够在整个范围内提供比 CLLLC 更大的功率。这使人们很容易以为 DAB 是当之无愧的赢家。但是,请记住超小尺寸和重量是 OBC 的核心要求。DAB 转换器需要两个额外的电感器,但 CLLLC 只需要一个。因此本文认为,CLLLC 更胜一筹


与大多数工程设计工作一样,最好的方法大多就是根据要求进行权衡。获得巨大优势往往会有代价,这次也不例外。本文认为,CLLLC 在尺寸方面比 DAB 更具优势





您认为哪种转换器更符合您的需求?

欢迎留言分享交流!






点击阅读原文

即刻解锁《电源设计小贴士集锦》,更多相关知识等待解锁!

德州仪器 德州仪器(TI)是全球最大的半导体设计与制造公司之一。我们将在这里为您分享TI最新的动态和技术创新。
评论
  • 凭借十多年在光电领域的深耕细作,KINGLIGHT晶台光耦成功组建了一支资深且专业的研发团队,掌握了先进的工程设计技术,并确立了稳固可靠的封装工艺流程。公司内部管理严格遵循ISO9001、ISO14001及IATF16949国际标准体系,所生产的产品不仅通过了UL、VDE、CQC、AEC-Q102车规级认证以及国家电网的认证,还全面符合RoHS、REACH指令要求及无卤标准,其品质已跻身国际一流水平。▲晶台光耦智能制造展示晶台推出的高速光耦系列产品,自问世以来便以卓越的性能脱颖而出,能够完美适配
    晶台光耦 2025-02-08 10:06 35浏览
  • J599光纤连接器概述J599是一种圆形光纤航插连接器,其体积小、重量轻、高密度以及连接可靠等特点, 已经得到了非常广泛的应用,其标准化、系列化也已相当成熟。随着光纤通信技术的快速发展,各类设备和系统光纤通信需求越来越多,光纤连接器需求也在持续增加。在一些特种设备与装备上,一些主要的军用连接器厂家在J599连接器产品上开发了J599系列的光纤或者光电混装连接器;同时随着对光纤通信要求的不断提升,一些连接器厂家还光纤连接器的特使特点,不断的拓展,形成高密度、扩束、双向浮动等多种系统的光纤连接器产品
    用户1736386974654 2025-02-07 16:12 30浏览
  • 文/Leon编辑/cc孙聪颖‍DeepSeek的持续火爆,被广泛认为是中国AI大模型的“弯道超车”,其最大的意义是打破了物理算力至上的逻辑,用更低的成本训练出高性能AI大模型,对行业领头羊OpenAI产生巨大冲击。自2025年1月末上线以来,基于DeepSeek V3模型的DeepSeek官方App下载量飙升,目前已经登顶全球140多个国家应用商店,日活突破2000万,在多个国家及地区取代ChatGPT成为最受欢迎的AI应用。人红是非多。很快,DeepSeek的高效、低成本遭遇质疑,包括马斯克等
    华尔街科技眼 2025-02-07 16:54 44浏览
  • 应用环境与客户需求随着科技的进步与消费者对笔记本电脑需求的增长,越来越多的品牌商将笔记本电脑的设计朝向更轻薄、更高效的方向发展。这样的设计不仅增强了便携性,也提高电脑的使用体验。然而,随着电脑内部结构的日益精密,屏幕的耐用性问题也随之而来。尤其是笔记本电脑的屏幕,作为一个脆弱的组件,在日常使用过程中容易受到各种因素的影响而损坏,包括摔落、搬动、开关盖等常见动作。本案例客户是一家笔记本电脑品牌商,他们发现到自家产品在市场上深受欢迎,但有部分终端消费者购买回去的笔记本电脑屏幕却出现破损,且这些问题并
    百佳泰测试实验室 2025-02-07 12:10 21浏览
  • 文:郭楚妤编辑:cc孙聪颖TikTok 原本看似被封死的前路,再度出现了转机。当地时间 2 月 3 日,美国总统特朗普签署了一项行政命令,正式宣布启动美国历史上第一个主权财富基金的创建计划。这一举动在经济领域掀起波澜,也为 TikTok 的未来发展带来了新的变数。特朗普签署行政命令后表示,该主权财富基金未来或可用于维持 TikTok 在美国的运营。TikTok 的命运,再度被交到了这位行事风格多变、刚愎自用的“总统先生”手中。将时间的指针拨回到 2020 年,彼时正处于总统任期的特朗普抛出了一条
    华尔街科技眼 2025-02-07 15:28 30浏览
  • 文/朴晋泽编辑/cc孙聪颖‍近日,一则重磅消息在中韩商界引发广泛关注:阿里巴巴与韩国零售巨头新世界集团(Shinsegae Group)达成合作,双方将共同出资成立合资公司。新公司总估值达 40 亿美元,各持股 50% 。此次合作旨在整合双方在电商领域的优势资源,将新世界旗下的电商平台 Gmarket 与阿里巴巴速卖通韩国业务进行整合,共同开拓韩国及全球市场。尽管近年来中韩关系面临一定挑战,但企业间的商业合作步伐从未停歇。在经济全球化背景下,商业利益始终是企业合作的重要驱动力。韩国作为亚洲极具活
    华尔街科技眼 2025-02-08 15:14 28浏览
  • 无创血糖检测技术的突破与线路板技术的深度融合2025年2月5日,上海交通大学医学院附属瑞金医院发布了一项革命性的无创血糖检测技术——多重微空间偏移拉曼散射(mμSORS)光谱技术。这项技术通过将手掌轻轻贴在检测设备上即可完成血糖测量,无需扎手指或抽血,极大地提升了糖尿病患者的依从性和生活质量。与此同时,作为一家服务全球的PCB&PCBA的智造平台,我们深圳捷多邦注意到这项技术的实现离不开高精度、高性能的线路板支持。线路板作为电子设备的核心组件,其设计和制造水平直接决定了设备的性能和可靠性。无创血
    捷多邦 2025-02-10 10:07 24浏览
  • 前言在这个被学历紧密裹挟的时代,“读书无用论” 的杂音偶尔还会冒出来扰乱视听。但请坚信,教育始终是为人生添砖加瓦最有力的途径。身为一名大专在读生,在参与各类比赛以及和优秀院校同学交流互动的过程中,我对大专与本科之间的差异有了更切实的感悟,所以我想根据2024年一整年的经历还有感受,和大家分享一下为什么我觉得上一个好的大学是对成长有非常大的帮助一年中最大的感悟(必看)https://mbb.eet-china.com/blog/4067534-463118.html学习总结:又多又杂2024年主要
    小恶魔owo 2025-02-09 22:07 102浏览
  • 作为从技术工作起步的职场人,我的发展应该跟多数人不一样。从毕业至今数十年,进过不同行业、去过不同地区、接触过不少重点项目。总有新认识的人问我:“你后来还学了哪些专业?是怎么有跨领域能力的”?每次我都会如实回答和举例。由此想来,刚好可以利用这篇文章整理一下,等下次再遇到有人问我时,就直接分享本文。 我其实一直对自己没有“职业规划”,因为我认为“职业规划”会受限于眼前的认知。但从我读书时起,我会做“学习计划”(包括与专业及爱好相关的其它知识),工作后我也延续了这一习惯,将计划与自己所期待的
    牛言喵语 2025-02-09 02:37 50浏览
  • 【工程师故事】一位大专生的总结(上)https://mbb.eet-china.com/blog/4067534-463117.html前言书接上文,我为什么会觉得为什么一定要考个本科呢?以前我觉得只要人认真学、肯花时间研究,本科和大专好像也没什么区别但是2024年我认识了一些顶级大学的同学,才知道原来本科和专科的区别真的很大!我从今年和一位武汉理工的同学互相学习、交流之后,给大家分享我们的之前的经历然后从这些经历中,给大家说一下自己的感悟(一)认识平时基本上接触不到大学学府,那我是怎么认识到这
    小恶魔owo 2025-02-10 03:09 78浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦