【光电智造】自动驾驶激光雷达:原理、类型与应用梳理

今日光电 2025-04-11 18:04
今日光电

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!


----追光逐电 光引未来----

1.什么是激光雷达

激光雷达LiDAR的全称为Light Detection and Ranging 激光探测和测距。

激光雷达的工作原理:对红外光束Light Pluses发射、反射和接收来探测物体。白天或黑夜下的物体与车之间的距离。甚至由于反射度的不同,车道线和路面也可以区分。光束无法探测到被遮挡的物体。

2.激光雷达的关键参数

点频:每帧水平方向平均点数x垂直方向平均点数x帧率=(水平视场角/水平角分辨率)×(垂直视场角/垂直角分辨率)

扫描频率:10Hz就代表每秒扫描10次(转10圈)

视角(Field of View, FOV):FOV包括垂直视场角(VFOV)、水平视场角(HFOV)、对角线视场角(DFOV);通常,在没有特殊说明时,我们默认的FOV一般都是水平视场角。


在这里插入图片描述


在这里插入图片描述

角分辨率:指的是相邻两个激光扫描点之间的角度间隔,一般以度(°)为单位。由于目前激光雷达有很多种扫描方式,每种方式在扫描点分布上的差异,导致扫描点并不绝对均匀,因此这里讲的激光雷达角分辨率是一个等效平均的概念。直观理解,角分辨率越小,单位空间角内分布的激光点数就越多,其对于物体的分辨能力就会越强。相同角分辨率下,对同一物体,距离越远探测到的激光点数越少,如图所示。


在这里插入图片描述

线数: 对于机械激光雷达来说, 一般多少线就需要多少个激光器。

反射率: 激光雷达返回值除了三维点坐标 (x, y, z)之外, 还有反射率和距离, 入射角度, 与物体表面反射率

波长: 常见的激光雷达波长为 905nm, 1550nm两种, 1550nm 距离可见光波段更远, 所以对人眼更安全, 波长更长穿透度更好,更有利于在雨雾天气使用, (由于成本较高, 还未成为主流)。

探测距离:一般要求200米,以达到最远刹车距离的要求

回波模式: 单回波和多回波, 激光雷达发出的激光点是有一定面积的, 有时可能会出现1个激光点发出后, 打在2个物体上(如同一束激光打在两片树叶上), 此时可以选择是接受最后一次回波的值还是反射强度最强的回波的值。


以禾赛128为例

1、10%反射率下最远探测距离200米
2、视场角:120°x25.4°
3、角分辨率:0.1°(H)X0.2°(V)
4、功耗:18W
5、尺寸:137mmX112mmX47mm


在这里插入图片描述


在这里插入图片描述


3.激光雷达种类

传统机械扫描; AT128,有机械结构,体积比较大。

使用机械部件旋转来改变发射角度,水平360度扫描

EE了激光器堆叠工艺复杂,体积过大,垂直线数受限,难以通过


MEMS(Micro‐Electro‐Mechanical System) 半固态激光雷达

MEMS在硅基芯片上集成了体积十分精巧的微振镜,其核心结构是尺寸很小的悬臂梁——通过控制微小的镜面平动和扭转往复运动,将激光管反射到不同的角度完成扫描,而激光发生器本身固定不动。


在这里插入图片描述

优点:运动部件减少,体积小,成本相对较低。

缺点:MEMS可转角受限,限制扫描视野,存在成像拼接的问题


FLASH 泛光面阵式, 纯固态激光雷达,

FLASH工作原理类似于摄像头, 只不过摄像头是被动接受光信息, 而FLASH是主动发射面激光并接受反射激光, Flash激光雷达的成像原理是发射大面积激光一次照亮整个场景,然后使用多个传感器接收检测和反射光。但最大的问题是这种工作模式需

要非常高的激光功率。而在体积限制下,Flash激光雷达的功率密度不能很高。因此Flash激光雷达由于功率密度的限制,无法考虑三个参数:视场角、检测距离和分辨率,即如果检测距离较远,则需要牺牲视场角或分辨率;如果需要高分辨率,则需要牺牲视场角或检测距离。


OPA(Optical Phased Array) 光学相控阵,全固态激光雷达;

光学相控阵技术的原理是利用光源相干技术实现光线角度偏转,从而达到扫描测距的目的。OPA激光雷达发射的是光,而光和电磁波一样也表现出波的特性。波与波之间会产生干

涉现象,通过控制相控阵雷达平面阵列各个阵元的电流相位,利用相位差可以让不同的位置的波源会产生干涉(类似的是两圈水波

相互叠加后,有的方向会相互抵消,有的会相互增强),从而指向特定的方向,往复控制便得以实现扫描效果。


优点:OPA是纯固态器件,无需要活动的机械结构,

缺点:激光雷达对激光调试、信号处理的运算力要求很高。

前沿性探索阶段

4.自动驾驶感知传感器

下图是传感器感知的视野图,从图中可以看到,传感器的视野比人的视野更加宽广深远且盲区更小,基本能够涵盖车辆360度范围。
感知主要的传感器:Lidar、Radar(长距、短距)、Camera。


在这里插入图片描述

视觉传感器一般用于障碍物、车道线、交通灯检测、目标检测和跟踪功能。基本原理是首先获取图像并将图片转化为二维数据,然后通过深度学习方法做目标识别,再根据相机的内外参计算目标物体和主车的相对距离和相对速度。毫米波雷达主要用于目标检测、换道辅助、自适应巡航控制、停车辅助等,激光雷达一般应用于障碍物检测、定位等。


在这里插入图片描述


在智能驾驶领域,通常车辆会配置多种感知器,分别执行不同的任务,并进行感知融合。在感知融合中,会对所有目标进一步处理,得到更加准确的目标类别、距离、尺寸、速度等,感知完成红绿灯检测、车道线检测目标融合之后,把感知信息发送给下游模块。


在这里插入图片描述


5.激光雷达感知框架

以百度Apollo为例

感知框架中lidar、camera、radar、fusion 四部分内容定义在四个模块中。Lidar 和 camera 每个模块内部功能复杂,学习成

本较高。感知框架拆分后,模块依赖关系清晰。Lidar 和 camera 的感知流程分为多个模块,依赖关系呈线性状态;radar

和 fusion 的功能在单个模块内,功能如框图所示。


在这里插入图片描述

光雷达检测用于 3D 目标检测,它的输入是激光雷达点云,输出为检测到的物体的类型和坐标。

pointcloud_preprocess:点云预处理模块对输出的点云数据进行预处理。删除超值点、太远的点、扫描到自身车辆上的点、太高的点。

pointcloud_map_based_roi:过滤  ROI 之外的点云。感兴趣区域 (ROI) 指定可行驶区域,包括从高精地图检索到的路面和路口。HDMap ROI 过滤器处理 ROI  外部的lidar点,去除背景物体,例如道路周围的建筑物和树木。剩下的就是ROI中的点云以供后续处理。给定HDMap,每个 LiDAR  点的隶属关系指示它是在 ROI 内部还是外部。

pointcloud_ground_detection:点云地面检测,检测地面点,并保存所有非地面点的索引。

lidar_detection:基于点云进行3D物体检测,并输出检测到的物体的位置、大小和方向。Apollo提供了4种激光雷达检测模型:centerpoint、maskpillars、pointpillars、cnnseg。

lidar_detection_filter:根据对象属性、车道线、ROI 等过滤前景和背景对象。

lidar_tracking:跟踪模块用于跟踪障碍物的运动轨迹,更新障碍物的运动状态和几何形状,并分配跟踪id。

multi_sensor_fusion :多传感器融合模块融合Lidar、Camera、Radar多个传感器的输出结果,使检测结果更加可靠。该模块采用后处理技术,采用的算法是概率融合


5.1 pointcloud_preprocess

点云预处理模块对点云做过滤,删除异常的、感知不需要的点云。

删除空值,超限值点云;

删除过远(超过1000m)的点云;

删除过高的点云;

点云转化到主车自身坐标系,删除扫描到主车身上的点云。


在这里插入图片描述


5.2 pointcloud_map_based_roi

点云基于地图计算兴趣区域(roi,region of interest),根据高精度地图的road和junction边界判断点云是否在高精度地图内,获得

在高精地图内的点的索引。

下图是基于地图roi过滤的效果图。红色的是roi内的点云,白色的是roi外的点云。


在这里插入图片描述


5.3 pointcloud_ground_detection

地面点检测功能是检测出地面点,获得所有非地面点的索引,即non_ground_indices。

下图是地面点云检测的示例图,红色的点云是非地面点云,白色的是地面点云。分割出地面点云后,去除前景目标点云。然后用

剩余的非地面点云做聚类,检测当前场景下的所有目标,保证自动驾驶的安全性。


在这里插入图片描述


5.4 lidar_detection

检测模型完成目标检测功能,获得目标的如下结果:cx, cy, cz, length, width, height, heading, type

其中,(cx, cy, cz)是中心点,(length, width, height)是长宽高,heading是朝向,type是目标类别。示例如下

除了获取目标,还根据目标的3d bounding box,得到每个目标的所有点云。


在这里插入图片描述


5.5 lidar_detection_filter

完成激光雷达目标检测后,对检测目标做过滤。object_filter_bank可以同时使用多个过滤器,针对roi_boundary_filter做介绍,

roi_boundary_filter只用来处理前景目标(即妨碍车辆行驶的目标)。roi_boundary_filter过滤规则如下图。


在这里插入图片描述


5.6 lidar_tracking

多目标跟踪,获取目标运动的历史轨迹,得到更加稳定的朝向、速度、位置等信息,得到跟踪id。多目标跟踪的结果可进一步用于障碍物轨迹预测。

detections 来自最新检测的结果,tracks 表示历史的匹配结果。Match 是目标匹配算法,最终得到三种匹配结果:

unassigned tracks:历史的目标没有和最新的检测结果匹配上,这种情况会更新历史 tracks,并删除过老的 tracks

assignment:表示已经匹配上,根据dets和tracks更新tracks。

unassignement detections:最新检测的结果没有匹配上,添加到历史tracks中。这时会赋予一个新的track‐id


在这里插入图片描述

文章来源:自动驾驶之激光雷达-CSDN博客


来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。



----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566



评论
  • 什么是互斥量互斥量的应用场合互斥量的API函数基本代码结构互斥量使用举例递归锁递归锁举例总结什么是互斥量在freeRTOS中,多个任务访问一块共享资源,会产生竞争现象。比如马路上只有一个很早以前的电话亭,A、B都想要打电话,然后他们就开始打架了。但是如果A先进去了然后把门锁了,B想进去打电话的话只能在外面等,必须等到A把门锁打开。互斥量的应用场合像freeRTOS的多任务系统,任务A正在使用某个资源,还没用完的时候,任务B也来使用,就可能会导致问题。就比如串口,任务A正在用串口发送数据,此时任务
    二月半 2025-05-18 20:54 115浏览
  •   头部技术企业核心能力与行业解决方案解析   华盛恒辉科技有限公司   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转型、新能源软件、光伏软件、汽车软件,ERP,系统二次开发,CRM等领域有很多成功案例。   五木恒润科技有限公司   五木恒润科技有限公司:是一家专业的部队信息化建设服务单位
    华盛恒辉l58ll334744 2025-05-19 17:18 121浏览
  •   在数字技术重塑商业格局的当下,品牌如何借助创新工具实现价值跃升成为企业战略核心。软件开发已从单纯的技术迭代载体,演变为企业连接用户、驱动增长的关键纽带。因此,筛选靠谱的软件开发公司,成为企业数字化转型的重要决策 —— 专业公司凭借技术积累与行业经验定制解决方案,权威公司则以规范服务与交付能力保障项目落地。   筛选靠谱软件开发公司的三大核心标准   标准 1:技术适配性与行业匹配度   技术适配性:优先选择掌握云计算、AI 集成、低代码开发等前沿技术的团队。   行业匹配度:医疗
    华盛恒辉l58ll334744 2025-05-20 15:46 57浏览
  • 什么是信号量信号量能干啥信号量的函数实例举例总结什么是信号量简而言之,就是发出通知,接收通知的任务获得通知后去干啥啥。通知有多有少。自定义通知数量的,叫计数型信号量;只有有无(即“0”,“1”)通知的,叫二进制信号量。信号量能干啥资源管理:控制多个任务对共享资源(如外设、内存块)的访问权限,避免竞争条件任务同步 :实现任务间的时序协调(如等待某个事件完成)中断与任务通信:在中断服务程序(ISR)中快速通知任务处理事件(需使用 xxxFromISR 版本的函数)信号量的函数创建二进制信号量函数原型
    二月半 2025-05-18 20:48 111浏览
  • 这算是一款挺经典的“轨迹球”,它与其它品牌轨迹球最大的不同是它有个大圆环形状的滚轮,缩放图片、浏览网页非常方便,据说这还是Kensington独有的专利。我要拆解的这款轨迹球的型号是:K72337,算是同品牌系列里最最基础的入门款,优点是价廉物美(人民币200元左右),缺点是球的直径略小(40mm)—— 要想精准定位光标位置需要先有操控它的娴熟度,还有就是这款可供组合的按键也太少(高配型号有多个自定义按键),但好在我当年入手它就只是为了提高工作效率(用于文字编辑、程序修改、PPT绘图、音频剪辑等
    牛言喵语 2025-05-18 05:42 115浏览
  • 电磁场的作用主要体现在以下几个方面:首先在能源领域,电磁场是发电、输电的基础。无论是火力发电还是核电站,*终都需要通过电磁感应原理将机械能转化为电能。高压输电线路则利用交变电磁场实现电能的远距离传输,为现代工业和生活提供动力保障。在通信技术方面,电磁波作为电磁场的传播形式,构成了无线通信的基础。从无线电广播到5G移动网络,从卫星通信到光纤传输,本质上都是对特定频段电磁场的**控制和利用。雷达系统通过发射和接收电磁波实现目标探测,在气象预报、航空管制等领域不可huo缺。在医疗领域,电磁场技术为诊断
    锦正茂科技 2025-05-19 13:19 68浏览
  • 在智能化、数字化与信息化的时代浪潮下,物联网凭借着多频段间的通信协同能力与多协议间的通信兼容能力构建起了一张张无缝互通的IoT设备网络。从Sub-GHz频段到2.4GHz频段,从BLE/Wi-Fi协议到LoRa/Wi-SUN协议,多种频段资源与通信协议不仅推动了智能抄表、智能家居与工业自动化等领域的繁荣发展,还为万物互联的未来愿景奠定了坚实的底层通信基础。然而,随着无线通信技术的高速发展与全球IoT设备数量的持续增长,频段资源的有限性愈发凸显,在科技园区、交通枢纽与CBD等通信密集区域,同一频段
    华普微HOPERF 2025-05-20 11:07 72浏览
  • 随着智能硬件设备的快速发展,蓝牙音频语音芯片在智能家居、穿戴设备、车载电子等领域得到广泛应用。蓝牙音频语音芯片凭借其低功耗、高集成度和灵活的通信接口,成为许多开发者的选择。然而,在实际应用中,开发者可能会遇到IC芯片通过串口或MCU通信时无响应的问题。本文将从通信接口配置与故障排查角度,普及相关知识并提供解决方案。一、通信接口基础配置串口接线规则蓝牙芯片的串口通信需遵循“交叉连接”原则:TX(发送端)→ RX(接收端)RX(接收端)→ TX(发送端)若接线错误(如TX-TX或RX-RX直连),数
    广州唯创电子 2025-05-19 09:47 49浏览
  • 北京贞光科技作为三星电机一级代理商,提供全面升级的技术支持、样品供应和供应链保障服务,为客户提供专业、可靠的一站式解决方案,满足AI基础设施不断发展的需求,支持更高效、更强大的人工智能应用计算系统的开发。如需更多产品信息或技术支持,请联系贞光科技。三星电子在被动元件技术领域取得重大突破,推出专为AI服务器应用设计的超小型高容量多层陶瓷电容器(MLCC)。这些新组件解决了现代AI计算基础设施不断增长的电力需求,同时优化了密集服务器环境中的空间利用率。 满足AI服务器电力需求现代AI服务器
    贞光科技 2025-05-20 11:38 71浏览
  • 【拆解】+TFT LCD 通用测试仪拆解 目前对于车载行业,显示屏在整车的份额越来越高。各个供应商或者下级供应商都会回针对TFT的开发做规划。那么,在TFT测试方面,他们是如何进行产品开发前的测试和有效性验证的内。是的,无非就是他们公司自己开发点亮治具或者从治具供应商那边购买点亮设备。客户只需要提供客户需求。有能力的供应商就好针对需求进行分解开发。在规定的时间内完成产品的开发和交付。今天我们就来看看用在车载显示屏或者消费电子上面的TFT点亮治具—TFT LCD通用测试仪式怎么设计出来的。 如下就
    zhusx123 2025-05-18 14:07 109浏览
  • 电磁场是自然界中一种特殊的物质存在形式,由相互依存且能够相互转化的电场和磁场共同构成。这种无形的物理场充满整个空间,既能够传递电磁力,也能够以电磁波的形式传播能量。电场源于静止或运动的电荷,表现为对带电粒子施加作用力的能力;而磁场则产生于电流或变化的电场,能够影响运动电荷的轨迹。两者通过动态耦合形成统一的电磁场系统,其行为规律由麦克斯韦方程组完整描述。这个方程组包含四个基本方程,分别揭示了电荷如何产生电场、磁场无孤立磁荷的特性、变化磁场激发电场的规律,以及电流与变化电场共同产生磁场的机制。电磁场
    锦正茂科技 2025-05-19 13:07 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦