中国智能芯片行业前景研究报告

云脑智库 2021-07-30 00:00


来源 | 智能计算芯世界

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注研究方向

随着人工智能受到媒体和资本的热捧,近来国内外各路豪杰纷纷推出自己 的人工智能芯片,在PC行业已经开始逐年衰退,智能手机行业也随着市场的逐 渐饱和进入瓶颈期的情况下,人工智能、物联网、云计算、大数据等领域被认 为是下一个风口。其中,人工智能无疑是最受媒体和资本热捧的宠儿。同时, 国外大厂纷纷推出了自己的人工智能芯片。


随着人工智能的快速发展,应用场 景不断拓展,目前已覆盖包括深度学习、 机器视觉、指纹识别、人脸识别、个人 助理、智慧机器人等13个具体应用。技术架构来看,人工智能芯片分为通用性芯片(GPU)、半定制化芯片 (FPGA)、全定制化芯片(ASIC)三大类。


目前适合深度学习的人工智能芯片主要有GPU、FPGA、ASIC三种技术路线。GPU 最先被引 入深度学习,技术最为成熟;FPGA具有硬件可编程特点,性能出众但壁垒高。ASCI 由于可定制、 低成本是未来终端应用的趋势。



GPU使用SIMD(单指令多数据流)来让多个执行单元以同样的步伐来处理不同的数据,原 本用于处理图像数据,但其离散化和分布式的特征,以及用矩阵运算替代布尔运算适合处理深 度学习所需要的非线性离散数据。作为加速器的使用,可以实现深度学习算法。 


GPU由并行计算单元和控制单元以及存储单元构成GPU拥有大量的核(多达几千个核)和 大量的高速内存,擅长做类似图像处理的并行计算,以矩阵的分布式形式来实现计算。同CPU不 同的是,GPU的计算单元明显增多,特别适合大规模并行计算。


- The End

声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

微群关键词:天线、射频微波、雷达通信电子战、芯片半导体、信号处理、软件无线电、测试制造、相控阵、EDA仿真、通导遥、学术前沿、知识服务、合作投资.

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

   ///  先别走,安排点个“赞”和“在看” ↓  

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论 (0)
热门推荐
X
广告
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦