广告

Graphcore第二代IPU-M2000性能测试出炉,相比A100多个指标提升数倍

时间:2021-01-12 作者:Challey 阅读:
今年2月,EE Times评选出“十大AI芯片创企”,其中来自英国的Graphcore凭借其为AI计算而生研发的IPU获选。7月,Graphcore在布里斯托和北京同步推出了两款硬件产品:第二代IPU芯片Colossus MK2 GC200 IPU(简称MK2 IPU),以及包含四颗MK2 IPU,可用于大规模集群系统的IPU-Machine:M2000 (IPU-M2000)。最近,Graphcore公开了IPU-M2000的应用性能测试。这次Benchmark显示,相比A100,在IPU-M2000上,ResNet的吞吐量提升了4倍,ResNeXt的吞吐量提升了5.4倍,EfficientNet的吞吐量达到了18倍,Deep Voice 3达到了13倍。
广告
EETC https://www.eet-china.com

今年2月,EE Times评选出“十大AI芯片创企”,其中来自英国的Graphcore凭借其为AI计算而生研发的IPU获选。7月,Graphcore在布里斯托和北京同步推出了两款硬件产品:第二代IPU芯片Colossus MK2 GC200 IPU(简称MK2 IPU),以及包含四颗MK2 IPU,可用于大规模集群系统的IPU-Machine:M2000 (IPU-M2000)。最近,Graphcore公开了IPU-M2000的应用性能测试。这次Benchmark显示,相比A100,在IPU-M2000上,ResNet的吞吐量提升了4倍,ResNeXt的吞吐量提升了5.4倍,EfficientNet的吞吐量达到了18倍,Deep Voice 3达到了13倍。

第二代IPU-M2000应用测试性能

IPU-M2000是继英伟达的GPU和谷歌的TPU之后,世界上第三个公开发布的能够训练BERT-Large模型的AI处理器产品。最近公布的应用性能测试中表现优异。

 

这次发布的基于MK2 IPU的IPU-M2000的Benchmark覆盖了很多模型的训练结果,包括典型的CV模型ResNet、基于分组卷积的ResNeXt、EfficientNet、语音模型、BERT-Large等自然语言处理模型,MCMC等传统机器学习模型。其中BERT-Large这样的大型模型或是MCMC这样的传统模型,在一台IPU-POD64这样的系统级产品中训练,相比在2台DGX-A100上训练,也能够实现一定的性能收益。

在不同的机器学习训练中,最新IPU-M2000和IPU-POD的具体性能指标

上图展示了BERT-Large端到端的训练时间性能,最上方的是DGX-A100的性能,端到端的训练时间是69.5小时,训练的数据集是维基百科的英文语料,其他训练的参数,基本上是摘录了英伟达的数据。下方是对2个DGX-A100和3个DGX-A100做的一个线性扩展的估计。众所周知,从一个系统到两个系统到三个系统,基本是无法达到完全线性扩展的,所以这边也显示不出A100最佳和最高的性能可能性。最下方可以看到,在IPU-POD64上,PopART BERT-Large的端到端的训练时间只要13.2小时。如此看来,相比1个DGX-A100,BERT-Large能在IPU-POD64上实现5.3倍的提升,相比3个DGX-A100,则能够实现1.8倍的提升。上图右侧有一个价格/功率指示性的比对关系。1个IPU-POD64和3个DGX-A100的功率和价格基本相同,但却能够实现接近两倍的性能提升,这就是非常显著的性能优势。

推理优势

此前,EETC曾发表过《AI的训练与推理,会往哪个方向发展?》,文中提到:Graphcore联合创始人兼CEO Nigel Toon先生数度谈到AI“训练(training)和推理(inference)技术本质上没有什么区别”。Nigel Toon表示:训练和推理不应做过分严格的区分,未来部署机器智能才可能是正确的方向。

下面我们看看第二代IPU-M2000在推理方面的优势。

EfficientNet是2019年谷歌开发的一个模型。EfficientNet的模型尺寸有8个等级,B0是一个模型尺寸比较小的模型、模型尺寸最大的是B7,大概是60兆-70兆,B0是5兆的参数量级。

上图横坐标表示吞吐量、纵坐标表示时延。在PyTorch和TensorFlow两种不同的框架下,EfficientNet-B0在1台IPU-M2000上的吞吐量大概可以达到以“万”为单位的级别,时延远远小于5毫秒。而在最新的GPU上,即使在时延最大化的情况下,它的吞吐量也远远小于以“万”为单位的吞吐量级,充分凸显了IPU所具备的时延优势。

   

图中左上角展示了Deep Voice 3的训练性能,该模型训练在IPU上的吞吐量能够达到GPU的13.6倍。右上角展示的是BERT-Large推理上的性能,在双方都处于最低时延的情况下,在IPU上,与A100相比,BERT-Large能够实现3.4倍吞吐量的提升。大家可能会疑惑batch-size比较小的时候A100没有打满,我们把batch-size打大的时候、A100在batch-size可能是等于8的情况之下,它的吞吐量其实是有显著提升的。图中最上面红点,展示的是该模型在IPU-M2000上的最高的吞吐量和时延的性能,图中可以看到该模型在IPU-M2000上的吞吐量能够达到三千多。

左下角是LSTM推理的性能展示显示,IPU在时延和吞吐上这两方面都是有相当优势的。右下角展示的是MCMC概率模型训练的性能,MCMC模型是用来估计股票价格的一个评估工具。评估一个股票是不是能够超出大盘的基本股价时,一般都是用一个Alpha因子来表示。如图所示,该模型的训练在IPU-M2000上,比在最新GPU上快大概17倍。

计算机视觉

计算机视觉方面,左边是ResNet和EfficientNet的训练性能展示,右边是两个模型的推理性能展示。ResNet-50是一个中等规模的模型、拥有大概20兆的训练参数。EfficientNet-B4也拥有大概20兆的训练参数。两者参数量差不多,但是它们的性能表现有所不同。训练方面,ResNet-50相比A100,大概能实现2.6倍的性能提升,而EfficientNet相比A100能够实现10倍左右的性能提升。这是因为ResNet-50基本上是由卷积组成的,而EfficientNet是由可分离深度卷积组成的,它的卷积核比较小,在调度上的开销和算子的利用率在IPU上可能会有更好的体现。如果算子小、算子比较多,在GPU上的调度开销也会引入跟HDM内存上数据交互的开销,可能会导致了它们的性能大大的折损。这也说明了,在新一代的模型上IPU其实更具普适性。

推理方面,ResNet-50和EfficientNet-B0在PyTorch和TensorFlow的性能表现是不相上下的。这也说明了Poplar SDK 1.4中引入的对于PyTorch的支持,在模型运行中没有性能上的损耗。

IPU-POD64的横向与纵向扩展

IPU-POD64是16台IPU-M2000组成的一个解决方案。Graphcore已经在全球范围之内实现了该方案的交付。该方案实现了x86和IPU计算的解耦。

IPU-POD64是目前市场上非常少见的,可以同时将纵向扩展和横向扩展都做得非常好的AI计算平台产品。

纵向扩展是指IPU-POD64可以实现从一台IPU-M2000到一个IPU-POD16(4台IPU-M2000),再到一个IPU-POD64(16台IPU-M2000)进行软件透明扩展。也就是说,编译好的软件在一个IPU-M2000里能用,如果您希望获得16倍的性能,扩展到IPU-POD64,同样的软件也能够运行使用。与之相比,如果使用DGX-A100这样的机器,想要从1个DGX-A100扩展到4个DGX-A100,需要做大量的软件改造。有一个概念叫“分布式的机器学习”,就是要用一个分布式的机器学习框架,对您的算法模型进行相应的改造之后才能够从1个DGX-A100扩展到4个DGX-A100。

据沟通,很多头部互联网公司认为当前绝大部分单一工作负载最大不会超过IPU-POD64。也就是说,对于当前最主流的工作负载来说,1个IPU-POD64就能够让绝大多数工程师不需要担心分布式的机器学习、分布式的机器学习框架、分布式的通信,只需一个IPU-POD64就可以进行软件透明扩展。

纵向扩展不代表不能做横向扩展。从横向扩展的角度来看,多个IPU-POD64最多可以支持64000个IPU组成的AI计算集群。所以,以最小的IPU-M2000作为一个计算单元,Graphcore可以在横向扩展、纵向扩展两个维度,获得非常好的超级AI计算集群。

Graphcore最新动态

据EETC了解,Graphcore最近有一系列的动作,包括Graphcore与阿里云HALO的合作,发布Poplar SDK 1.4加入MLPerf管理机构MLCommons等等。

阿里云在GitHub上开源了HALO。Graphcore是阿里云HALO/ODLA的共建合作伙伴之一,目前在阿里云HALO的GitHub里已经有IPU的完整支持代码库odla_PopArt。这意味着在GitHub下载HALO开源代码就已经可以在IPU上使用了。目前,Graphcore和阿里云也在基于HALO做一些共同的客户落地的事情。

Diagram, timelineDescription automatically generated

Graphcore与阿里云HALO展开了非常紧密的合作。HALO的初衷和NNFusion一样,想做一个整体的框架,向上跨AI框架,向下通过ODLA这样一个通用的硬件接口对接不同的硬件厂商的芯片。他们的初衷多是希望处理不同模型,比如TensorFlow模型、ONNX的模型、或是PyTorch的模型时,能够将它一键式地在系统上或者是集群上运行起来。

此外,Graphcore最近发布了Poplar SDK 1.4,并同时发布了面向IPUPyTorch产品级版本。

同时Graphcore于近期宣布,加入MLPerf管理机构MLCommons。

Graphcore将在2021年上半年正式参与MLPerf性能测试,其IPU-POD64也已经在全球范围内发货,包括中国、北美、欧洲以及其它区域。

EETC https://www.eet-china.com
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Challey
暂无简介...
  • 模拟ML新思路:通过减少数据量来节省电池用量 寻求更长的电池使用寿命促使系统设计人员采用一种新的架构,以便可以处理更少的数据量,因为更少的数据处理意味着更长的电池寿命。位于边缘端的模拟ML芯片可以像智能流量管理器一样工作,使数字处理芯片保持休眠状态,仅在需要时才唤醒它们。
  • 拆解对比小米11和10:除了骁龙888和865,还有哪些差别? 作为高通骁龙(Snapdragon) 888 处理器的首发机型,小米11 发布会后没几天,包括XYZone楼斌、艾奥科技蒋镇磷、DQnews和世纪威锋科技等一批数码科技博主就发表了拆解视频,应该是最早一批拿到小米评测样机的媒体。小米11用了什么招数,压制传说中发热量巨大的骁龙888?和小米10从内部设计上对比,哪个更优秀?……
  • 科创板的16家IC设计公司有哪些核心技术及运营风险? 自从科创板于2019年6月正式开板以来,共有16家中国本土的IC设计公司(包括Fabless和IC设计服务公司,但不包括IDM企业)登陆科创板。这16家IC设计公司在2020年的“市场”表现如何呢?我们所谓的“市场表现”是指这些公司在技术和产品研发、营收利润、市场竞争和企业运营管理等方面的表现,而不是指这些股票在金融市场的表现。
  • 华为申请灵犀芯片、灵犀处理器等多个商标,会用在哪? 近日华为技术有限公司新增多条商标申请信息,其中包含了“灵犀芯片”、“灵犀处理器”,国际分类涉及“9类 科学仪器”,商标状态均为“注册申请中”。通过国际分类为9和42,结合华为的业务,芯片与处理器一同申请,大概率会用于华为旗下自有及HiLnk平台的第三方智能终端产品或嵌入式设备。当然也不排除……
  • 汽车芯片缺货,多家车企寻找替代料或停产应对 芯片供应短缺的波及面正在扩大,如今已经从消费电子蔓延到了汽车领域。刚从疫情中缓过劲,正在回暖的汽车行业,又遭受了一记闷棍,包括大众、本田在内的部分汽车工厂出现了停产。据了解,本次汽车芯片短缺问题主要出现在上游企业,短缺的是ESP(电子稳定程序系统,标准叫法ESC,ESP是博世专利)和ECU(电子控制单元)……
  • 港珠澳大桥海关查获大批涉嫌侵权“ANALOG DEVICES”品 2020年12月26日,无锡某电子科技有限公司向港珠澳大桥海关申报出口一批集成电路等货物。现场关员开箱查验时发现,该批集成电路带有“ANALOG DEVICES”标识,货主无法提供合法授权证明,现场查验关员初步判定该批货物有较大侵权嫌疑……
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了