广告

PACE,曦智科技的一小步,光子计算的一大步

时间:2021-12-22 14:11:00 作者:邵乐峰 阅读:
PACE是曦智科技(Lightelligence)日前发布的最新高性能光子计算处理器,在单个光子芯片中集成了超过10,000个光子器件,系统时钟达到1GHz,算力是上一代处理器的100万倍以上,运行特定循环神经网络速度可达目前高端GPU的数百倍。
广告

光子计算芯片公司曦智科技(Lightelligence)日前发布了其最新的高性能光子计算处理器——PACE(Photonic Arithmetic Computing Engine,光子计算引擎)。据悉,PACE在单个光子芯片中集成了超过10,000个光子器件,运行1GHz系统时钟,算力是上一代处理器的100万倍以上,运行特定循环神经网络速度可达目前高端GPU的数百倍。

曦智科技最新光子计算处理器PACE

创立于2017年的曦智科技孵化于麻省理工大学Dr. Soljacic实验室,是全球第一家光子芯片公司,也是该领域目前为止融资规模最高的公司,累计融资总额超10亿元人民币。目前,公司拥有来自10余个国家近200位工程师和研究人员,技术人员占比超80%,70%的芯片设计师拥有10年以上半导体从业经验。

作为公司创始人兼CEO,沈亦晨博士在2017年6月以第一作者的身份,将其关于“通过光子技术实现人工智能计算新路径”的论文发表于国际学术顶级期刊《自然·光子》封面,为后来成立曦智科技,并将科研成果转化奠定了坚实的理论基础,

光子时代已来

算力、数据传输和存储,被沈亦晨视作当前电子芯片在发展过程中遇到的三个主要瓶颈。以最具代表性的图像/语音识别类AI应用为例,数据显示,从2012年开始,平均每3-4个月,神经网络和计算模型的规模就会翻一倍。与2012年相比,当前最大的神经网络模型大约是当时的15-30万倍,且仍在持续增长。但与之形成鲜明对比的,是底层算力的增长远未达到这一幅度,制约了人工智能的进一步发展。

算力为什么难以跟上AI模型的演进速度?半导体制程微缩逐渐接近物理极限导致的摩尔定律放缓,和晶体管功耗散热问题是两大主因。

“2015年以后,随着晶体管体积越来越小,隧穿现象日趋明显。这意味着,即使把单个晶体管做得再小,其在运算时的功耗也没办法进一步降低。但如果为了增强算力增加芯片面积,或是采用芯片级联的方式,功耗又会显著增长。”沈亦晨说,这就是为什么兼具高通量、高能效比、超低延迟特性的硅光技术能成为新兴技术方向之一的原因。

例如在数据搬运方面,光已在光通讯领域充分证明了其技术的领先性和优势,目前所有长距离通讯,包括数据中心里服务器与服务器之间的数据,都是通过光纤来代替铜导线进行的,光进一步进入到芯片中参与运算也将成为一种趋势。

另一方面,现在大数据越来越大的比例是在做线性运算,而曦智科技发明了一种利用光线高效地进行线性计算的方式,这是其另一个重要优势。

根据曦智科技联合创始人、CTO孟怀宇博士的分享,当光在非均匀介质中传播和散射时,其形态类似于某种形式的数学线性运算。曦智科技利用光执行向量矩阵算法(matmul),当光进入系统时,它会被一组光学调制器编码以形成输入光向量,然后它便进入可编程光学散射介质的区域,输入光向量经过矩阵后,输出光向量自然就代表了矩阵乘法的结果。

这里最吸引人的部分是,由于矩阵乘法本身是被动的,因此在这个过程中不会消耗任何能量;矩阵乘法是在光通过矩阵所需的时间内完成的,仅需几分之一纳秒;最后,高能效和低时延性能与输入光信号的频率无关,这就意味着光矩阵可以支持高通量。

沈亦晨在接受媒体采访时表示,他相信光子芯片“极有可能成为我们这个时代最重要的技术创新之一”,高能效、低延时和高通量也是光学矩阵运算能够超越摩尔定律,继续提升算力的关键所在,但整体的商业化过程会比较漫长。

为此,他将公司未来的规划分为三个阶段:首先,从2022年开始,1-3年主要落地于特别能体现光技术优势的应用场景;接下来,随着产品在不同场景展现出明确的优势后,将有更大规模的团队做训练;第三阶段,随着硬件和软件体系更加成熟,进一步切入GPU、车载芯片等对算力需求非常大的市场。

从100到10000

其实早在2019年4月,曦智科技就推出了全球首款光子芯片原型板卡,包含约100个光子元器件,并用光子芯片运行了Google TensorFlow自带的卷积神经网络模型来处理MNIST数据集,整个模型超过95%的运算是在光子芯片上完成,准确率接近电子芯片(97%以上)。此外,光子芯片完成矩阵乘法所用的时间是最先进电子芯片的1%以内。 

2019年4月,曦智科技推出全球首款光子芯片原型板卡

但孟怀宇认为,这只是拉开了光子计算的序幕而已,要将光学矩阵的理论优势变为市场优势,发挥光子计算的全部潜力,一个关键问题是如何将大量的光子和电子器件集成在一起,毕竟一个商用级的光学矩阵引擎可能会包含数以万计的光子器件。

曦智科技的解决方案是自研大规模集成硅光芯片和电子芯片,然后使用先进封装工艺将它们堆叠在一起。因此,相比2019年推出的原型板卡,此次推出的PACE单芯片在集成度上提高了2个数量级,光子元器件数量从100提升到10000个;系统时钟提高了4个数量级,达到GHz级别,未来有望再继续提升1-2个数量级。

PACE包含64x64的光学矩阵,核心部分由一块集成硅光芯片和一块CMOS微电子芯片以3D封装形式堆叠而成。其电子芯片包含数字电路和模拟电路两部分:数字电路由控制逻辑和SRAM组成,前者负责调节数据流和输入输出,后者用于片上数据存储;模拟电路则是数字逻辑和光子器件之间的桥梁。对于每个光学矩阵乘法,输入向量值首先从片上SRAM中提取,由数模转换器转换为模拟值,然后通过电子芯片和光子芯片之间的微凸点应用于相应的光调制器,光调制器相应地减弱入射光,形成输入光向量。

整个64x64光学矩阵用类似机制进行编码。接着输入光向量通过光矩阵传播,产生输出光向量,并达到一组光电探测器阵列,从而将光强转换为电流信号,最后电信号通过微凸点返回到电子芯片,通过跨阻放大器和数模转换器返回数字域。

PACE上共有数千个微凸点来帮助电子芯片和光子芯片之间的数据传输。

除了3D封装的光子和电子芯片外,PACE还使用了光纤阵列连接激光源,整个组件被安装在了一块PCIe卡尺寸的PCB板上,如电源系统输入输出连接器等外围部件也都连接到PCB板上。

但PACE不是纯光子计算,而是一个光电混合计算系统——所有的指令集编译器和SDK都承载在电芯片上,光芯片更多承接线性计算和数据网络等主要任务,由电芯片发出指令以及与客户交互,这使得PACE能与现有市场软件环境兼容。

沈亦晨强调说,PACE芯片不是为了在通用性上证明它可以运行所有神经网络,更多是要证明光计算优势的上限或潜力。而之所以选择循环神经网络,是因为其能够相对独立地将矩阵优势最大化,对于像GPT/Transformer这样的非传统循环神经网络模型,曦智科技可能会在明年推出一个更通用化的产品。

三大硬核技术

曦智科技的核心技术主要包括三大部分:oMAC-光学乘积累加运算、oNOC-片上光网络和oNET-片间光网络。

oMAC是一种用光替代传统电子进行数据处理的模拟计算,数据可加载在光的强度或相位上,数据流动的同时进行计算。采用与CMOS兼容的硅光工艺平台,高速可调、小尺寸电光调制器设计,基于MZI结构的相干/非相干方案,硬件-算法的协同优化,以及先进封装技术等先进技术实现。

其优势在于光的矩阵乘法并行计算能力更强,能效媲美甚至优于电子芯片,且延迟更低。此外,硅光对工艺制程要求和成本很低,65nm或45nm的CMOS工艺器件就能满足现在光子计算所有的要求,其制造工艺成本远低于电芯片。

oNOC-片上光网络则是通过波导代替铜导线的方式,让数据在光芯片网络中传递,可实现单个电芯片(EIC)内部的数据传输、封装内部多个电芯片之间的数据通信。简单而言,就是在光芯片上构建一个固定或可灵活调整的通讯网络拓扑,将不同的电芯片与其中单个或多个节点相连,实现基于oNOC的数据交互。然后,采用基于波分复用的网络拓扑来进行数据传播。

它的主要优势是高带宽、低能耗、低延迟、距离不敏感。另外,该方法通用性强,可将不同类型的电子芯片与之结合,为芯片间提供高速、低能耗的互连,适用于有高带宽需求的应用场景。

oNET-片间光网络起到的作用是将单元内部需要传输的数据集中起来,通过光传播介质(如光纤)与其他单元进行数据交互,优化计算单元之间的通信效率。相比传统电互连,光网络的能效比高、光学传播损耗低、带宽高、延迟低,且传输距离不敏感。

曦智科技工程副总裁Maurice Steinman 表示,这种光互连技术可用于多种传输介质,包括光缆,以及芯片、中介层和晶圆层面集成的波导,并提供高通量、低时延和高能效的数据传输和互联。今后,光互连和光计算的成功结合将为面向加速器、服务器和数据中心需求的高性能产品奠定坚实的基础。

目前来看,PACE可用于解决组合问题,通过重复矩阵乘法和巧妙利用受控噪声组成的紧密回环来实现低延迟,生成如伊辛问题(Ising)和最大割/最小割问题(Max-cut/Min-cut)的高质量解决方案。

这些困扰了全球数学家近50年的难题,属于多项式复杂程度的非确定性问题(NP-complete),即在多项式时间尺度下无法通过数学方法解决的问题。相关算法被广泛应用于生物信息、交通调度、电路设计、材料发现等领域。而一旦一个NP-complete问题得到解决,就可以相对容易地将解决方法映射到其他NP-complete问题上。

结语

“PACE是曦智科技技术路线中的一个重要里程碑,首次验证了光子计算的优越性,也是首次展示了光子计算在人工智能和深度学习之外的应用案例。”沈亦晨表示,云计算、智能驾驶、量化交易、生物医药等应用场景将成为PACE首先落地的领域,目前公司已与全球前五大云服务供应商之一、美国前三大商业银行之一展开了深度合作。

目前,曦智科技团队正全力准备计划于2022年推出的新产品,在产品筹备期间,曦智科技将继续与半导体供应链、云计算、金融、自动驾驶等行业的领导者开展合作,以验证光子计算的可行性和通用性。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
邵乐峰
ASPENCORE 中国区首席分析师。
  • VR/AR显示器主要器件OLED、LTPS、OLEDoS、LEDoS的设计 • 与AR(augmented reality)显示器相比,VR(virtual reality)显示器的供应链更加成熟,因为基于TFT驱动线路的LCD或AMOLED显示屏被广泛使用,而且相关的面板厂商已经存在,产能与供应都不是问题。 • AR显示器的主要元器件是微型显示器(micro display)和光学器件(optics)。两者需要组合才能发挥功能。LEDoS(LED on silicon, micro LED)的优势在于高亮度,并足以抵抗环境光的强度,但其彩色化的技术尚未成熟。
  • 神经形态新秀连手催生结合处理器IP的图像感测单芯片 瑞士新创公司SynSense和法国厂商Prophesee正在合作开发一款事件导向图像传感器单芯片,结合Prophesee的Metavision 图像传感器和Synsense的DYNAP-CNN 神经形态处理器。
  • 云端竞速:MLPref最新AI训练跑分结果出炉 微软Azure利用大规模的Nvidia驱动实例,在最新一回合的MLPref人工智能训练性能测试基准跑分展现了世界速度最快的AI云端系统...
  • Gartner发布2021年全球半导体厂商营收排行,三星重返王 Gartner 1月19日发布的报告显示,去年整个半导体市场增长了25.1%,达到5835亿美元,这是销售额首次突破5000亿美元。厂商排名方面,三星超过英特尔,成为顶级芯片销售商……
  • 调涨最高10%,苹果首次接受台积电涨价 苹果为确保自身产能已接受台积电涨价,包下台积电12-15万片4nm产能。目前苹果自研的下一代A16应用处理器已完成设计,采用台积电4nm工艺投片,预计2022年下半年进入量产。
  • 中科院微电子器件与集成技术重点实验室7篇论文入选IED 中科院微电子器件与集成技术重点实验室7篇学术论文入选,研究成果覆盖了阻变存储器、铁电器件存储器、IGZO 随机动态存储器DRAM、器件物理与模型等多项学术前沿领域,这是重点实验室连续8年在IEDM大会上发表论文。
  • 新款iPad Pro 2021成最受欢迎的 由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
  • 三星折叠屏手机Galaxy Z Fold 3 目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。

  • 5G基站数破百万,高通助力手机品牌成 1月20日,5G发展迎来又一里程碑——工信部宣布,截至2021年年底,中国5G手机终端连接数达5.18亿户。这相当于自5G牌照发放之日起,平均每天新增入网手机达54万部之多。
  • SXSW多元创新大会公布2022年入围名 全球三大创新大会之一的SXSW多元创新大会公布创新奖入围名单,Velodyne Lidar智能基础设施解决方案获得智慧城市、交通运输两项创新大奖的认可。
  • 行业新闻|突发!刚刚,欧姆龙宣布涨价!10%-15%! ●  突发!刚刚,欧姆龙宣布涨价!10%-15%!●  日本突发地震,东芝芯片厂被迫停工●  美国对俄实行“类华为禁令”,三星、LG恐成受灾户1、突发!刚刚,欧姆龙宣布涨价!10%-15%!刚刚,媒体
  • 53亿美元收购世创获中国有条件通过!环球晶圆需剥离区熔法晶圆业务! 1月22日消息,昨日中国反垄断机构——中国国家市场监督管理总局有条件的通过了半导体硅片(又称“硅晶圆”)大厂环球晶圆对德国半导体硅片厂商世创(Siltronic)的收购。此前,该收购交易已经获得了美国
  • 本周五开课!一节课讲解如何用AI芯片构建计算存储系统 ARC解决方案应用领域广泛,涉猎了从汽车、5G、物联网,到存储、AI、云等多个应用场景。针对复杂的汽车领域,ARC 智能网联汽车技术论坛 将于2022年2月24日 1:30 pm - 5:30 pm 
  • 烁科晶体:市占率50%,计划2023年上市 2021年,第三代半导体产业迎来了“高光时刻”,2022年,产业如何更好地“乘风破浪”?除旧迎新之际,“三代半风向”特别邀请了一批SiC、GaN产业专家,一同回顾2021、展望2022,希望通过一系列
  • 亚化咨询各业务版块公众号推荐! 亚化咨询是国内领先的能源、材料等新兴领域的研究机构,2008年成立于上海浦东。业务范围:咨询研究、会议培训、投资顾问重点关注:煤化工、高端石化、光伏、氢能与燃料电池、生物能源材料、半导体、电化学储能等
  • 新能源商用车驱动电机的流量密码,这次必须整明白! 传统工程机械和商用车以柴油作为主要能源,能耗高、噪声大、污染严重。随着电动化和自动化趋势的发展,市场越来越需要一种可以提供更加环保、节能、高效的动力系统。新能源商用车驱动电机可以应用在以下各种终端场景
  • 没有串口,如何打印单片机调试信息? 输出调试信息是嵌入式开发中必不可少的调试利器,嵌入式开发的一个特点是很多时候没有操作系统,或者没有文件系统,常规的打印log到文件的方法基本不适用。最常用的是通过串口输出uart log,例如51单片
  • 格科微12寸厂完成设备安装! 1月22日,业内人士告诉记者,格科微的临港12英寸晶圆厂项目目前已经完成了设备安装。根据此前报道,2021年8月,格科微项目已完成结构封顶,迎来竣工重要节点。如今,该项目已经完成设备安装,这意味着该项
  • 亚化咨询推出《中国半导体大硅片年度报告》,欢迎索取目录! 2021年,半导体硅片需求,尤其是12英寸大硅片需求节节攀升,日本两大巨头信越化学与SUMCO纷纷宣布扩产。与此同时,国内的多个半导体硅片企业及项目迎来巨大进展。来源:整理自亚化咨询《中国半导体大硅片
  • 彻底摊牌!起底华为万亿战略野心 来自半导体八阿哥第133篇原创文章。本文共3319字,预估阅读时间8分钟华为大家都不陌生,在这里想问大家一个小问题:感谢美国的制裁,如今不知道华为的人已经很少了。但真正理解华为的人,恐怕还不多。如果问
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了