广告

研究人员打造异质整合的微流控荧光传感器

时间:2016-06-21 作者:Julien Happich 阅读:
美国南加州大学(USC)的研究人员采用异质整合的方式,设计出软性微流控荧光传感器,可望应用在穿戴式诊断系统或可植入式设备。
广告
ASPENCORE

美国南加州大学(University of Southern California;USC)的研究人员采用异质整合薄膜微型垂直腔面发射激光器(VCSEL)与硅光电二极管(Si-PD)的方式,设计出一种完全封装的软性微流控荧光传感器。sCwEETC-电子工程专辑

这种软性传感器的厚度仅几微米,尺寸约几平方公分(包括微流控通道聚合物涂层),经证实能以低至5×10-5%权重的发光体密度,执行多任务、实时监测流经透明微流控通道的荧光分析。sCwEETC-电子工程专辑

研究人员采用在先前研究中开发出的转印方法,在软性聚对苯二甲酸乙二酯(PET)基板上实现异质共组过程,使其得以从其GaAs生长的晶圆剥离微型VCSEL薄膜,以及在以预定的图案胶合组件之前从SOI基板剥离Si-PD,从而打造出软性传感器。sCwEETC-电子工程专辑

使用这种转印方法,研究人员得以突破传统的半导体基板限制,使其能够在较大面积的软性、防水分层结构上设计传感器数组——每一个传感器包括以Si-PD U型数组包围的发射型850nm微型VCSEL,每二个传感器之间均以金属沟槽分离。sCwEETC-电子工程专辑

其光学堆栈还包括多层角度和波长可选的光谱滤波器,可减少微型VCSEL与Si-PD共整合之间的光学串扰,从而优化信噪比(SNR),以及侦测荧光传感器的阈值,作为在微流控通道流通的发光体以及层迭于组件顶部的储存槽。
20160621 sensor NT01P1sCwEETC-电子工程专辑

在PET基板上异质整合微型VCSEL与Si-PD的机械式软性整合荧光传感器的(a)分层(左)与倾斜视图(右);(b)在硅基板上共整合发射型850nm微型VCSEL与3μm Si-PD影像的彩色扫描电子显微镜(SEM)倾斜视图。图中显示详细的Si-PD掺杂布署,包括n+-与p+-杂区域。(c)包覆于圆柱上PET互连荧光传感器的2x4数组(弯曲半径:12 mm)。

研究人员表示,所显示的层压弹性微流控与光传感器组装均能可靠地执行荧光测量,即使是在弯曲半径小至50mm时也能反复进行弯曲。sCwEETC-电子工程专辑

有趣的是,该微型VCSEL(22×22μm2孔径)在进行聚合物封装后,其GaAs晶圆的输出功耗并未降低,实际上却是从大约4.5mW增加到5.3mW。研究人员认为原因就来自于雷射开孔顶部的聚合物层,导致传输雷射输出增加。sCwEETC-电子工程专辑

针对具有分布式传感器的较大面积上,这种软性传感器数组可用于同时检测各种不同的发光体。最终,这些软性光微流控将能在体内荧光感测或成像技术中找到应用于穿戴式诊断系统或甚至是可植入式装置的方式。在这一类应用中,机械的灵活性将使传感器更能发挥作用。sCwEETC-电子工程专辑

编译:Susan HongsCwEETC-电子工程专辑

本文授权编译自EE Times,版权所有,谢绝转载sCwEETC-电子工程专辑

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。
sCwEETC-电子工程专辑

sCwEETC-电子工程专辑

ASPENCORE
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Julien Happich
暂无简介...
  • 使用宽带巴伦设计一款3 GHz至20 GHz高性能混频器 本文介绍一种可以在硅、GaAs或任何其它成过程中轻松实现的创新巴伦结构。这种巴伦拓扑的带宽比传统巴伦结构更宽。在0.18 μm SiGe BiCMOS工艺中,使用宽带巴伦设计一款3 GHz至20 GHz高性能混频器。
  • 纳芯微推出基于电容隔离技术的隔离误差放大器NSi3190 高可靠、高性能、低成本,打破模拟电源小型化瓶颈。
  • GaN IC:推动分立式晶体管走向尽头 采用分立式氮化镓器件或分立式MOSFET器件的设计工程师,现在可以改用GaN集成电路以节省时间、占板面积及提升他们的系统性能,从而实现具备更高的功率密度、更高的效率及更具成本效益的先进设计。当氮化镓集成电路开始集成多个驱动器、保护电路、控制电路及功率晶体管于单个芯片上时,设计师会逐渐减少分立式晶体管的使用。这是分立式晶体管走向尽头的开始。
  • 没有电容计,如何测量未知电容? 本文介绍的测量方法与各种SPICE模型的仿真相关。建议在实际电路中采集数据。用户可以根据所需的电容值,自由地创建数学模型;当然还要考虑瞬态等待时间和RC时间常数,因为这些因素可能导致长时间的等待。建议尝试根据需要更改电子元件的值。
  • 手把手教你构建可调线性AC-DC电源 双输出低噪声电源对于电子发烧友来说是一个必不可少的工具。在许多情况下都需要双输出电源,例如设计前置放大器和为功率运算放大器(OPAMP)供电等。在本文中,我们将构建一个可供用户独立调节正负轨的线性电源,在其输入端采用普通的单输出交流变压器即可。
  • 如何轻松稳定带感性开环输出阻抗的运算放大器? 一些运算放大器(运放)具有感性开环输出阻抗,稳定这一类运放可能比阻性输出阻抗的运算放大器更为复杂。最常用的技术之一是使用“断开环路”方法,这涉及到断开闭环电路的反馈环路和查看环路增益以确定相位裕度。一种鲜为人知的方法是使用不需要断开环路的闭环输出阻抗。在本文中,我将讨论如何使用闭环输出阻抗来稳定带阻性或感性开环输出阻抗的运算放大器。
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了