广告

深度学习、神经网络已融入你的日常生活中

时间:2016-06-30 作者:Jessica Lipsky 阅读:
你还没考虑如何为数据库提供深度学习与神经网络技术?现在应该要开始了…

我们已经与深度学习与大规模神经网络一起生活,事实证明也有越来越多应用程序仰赖计算机视觉、语言理解以及机器人等技术;而如同Google资深院士Jeff Dean在近日于美国旧金山举行的SIGMOD 2016大会发表专题演说时所言,我们现在最需要从机器学习中取得的是“理解力(understanding)”。
jeff

Jeff Dean. Source: SIGMODi9MEETC-电子工程专辑

i9MEETC-电子工程专辑

“我们现在有充足的运算资源,以及足够大规模的、有趣的数据集;”Dean对SIGMOD大会的听众们表示:“我们可以储存大量的有趣资料,但我们真正需要的是理解那些数据。”i9MEETC-电子工程专辑

在专题演说中,Dean概述了机器学习(machine learning,ML)与神经网络的历史,还有利用以影音呈现的原始数据编程模型之不同方法;他也详细介绍Google初具规模的ML研究成果,该公司最近将在欧洲设置一个机器学习研究中心。Google继去年发表TensorFlow算法后,又宣布自己开发了命名为张量处理单元(TPU)的人工智能加速器芯片(参考阅读)。i9MEETC-电子工程专辑

Dean表示:“随着时间推移,我们看到越来越多利用ML技术来解决各种问题的成功案例,这导致了Google内部数百个开发团队对相关技术的使用出现真正大幅度成长。”
20160629 DeepLearning NT03P1
*Google对深度学习技术的使用趋势
(来源:SIGMOD/Jeff Dean)*i9MEETC-电子工程专辑

Dean举例指出,Google的语音识别开发团队,透过利用神经网络将字词错误率降低了30%;该团队以神经网络取代了语音识别流水线(pipeline)的声学模型──也就是利用原始音波来判别声音与字词──并达成了二十年来最大幅度的改善成果。i9MEETC-电子工程专辑

利用机器学习与神经网络技术解决的基础性问题,也能在其他领域看到,例如医疗与卫星影像;在这些案例中,可能是需要在地图上识别某栋房子以勘查太阳能光电板的安装,或是进行糖尿病患黄斑部病变的筛选。用于语音识别的相同模型,可以轻易被利用来解决其他问题。i9MEETC-电子工程专辑

“那些模型有很多类似的地方;”Dean指出,Google翻译应用程序现在可以利用像素识别(pixel identification),实时将符号翻译成不同语言。i9MEETC-电子工程专辑

机器学习的未来发展

不过在机器学习以及神经网络的理解能力发展方面,还有一些待克服的障碍;包括模型必须要能在无人监督的状况下学习、处理多任务任务并转换学习,还有根据现实世界情况采取行动(也被称为强化学习)。i9MEETC-电子工程专辑

Dean表示,研究人员已经开始关注机器学习的隐私保护技术,并将该模型架构添加到mdash广告程序中;在这部分的机器学习中,人类的互动扮演在权衡时扮演重要角色,是很大的进步:“确保你提供的资料实际遵循你想要的隐私权政策很重要,或者你可以强加更高层级的政策到模型之上。”i9MEETC-电子工程专辑

从系统的角度来看,Dean表示下一个挑战是如何:“利用高层级的机器语言算法描述,以及将那些不同的描述映像到广泛的不同硬件上;”他也期望能将机器学习整合到更多传统的数据处理方案中。i9MEETC-电子工程专辑

摩尔定律(Moore’s Law)的尾端为机器学习提供了有趣的发展方向,Dean预期会有越来越多进行机器学习运算的异质或特制硬件;Google的TensorFlow ASIC是一个例子,而最近则是尝试利用以TensorFlow启动的机器人进行大规模数据收集。
Embedded content: https://www.youtube.com/watch?time_continue=4&v=iaF43Ze1oeI
“我认为这一次神经网络已经准备就绪;在90年代,我认为它们虽然带来很多激励,但就是缺乏运算资源。而现在,我想该类技术已经展现它们能解决相关有趣问题的能力;”Dean结论指出:“如果你还没考虑如何为数据库提供深度神经网络,现在应该要开始了。”i9MEETC-电子工程专辑

编译:Judith Chengi9MEETC-电子工程专辑

本文授权编译自EE Times,版权所有,谢绝转载i9MEETC-电子工程专辑

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。
i9MEETC-电子工程专辑

i9MEETC-电子工程专辑

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Jessica Lipsky
EE Times副主编,调查记者。Jessica Lipsky是EE Times的副主编,负责半导体行业的新闻和趋势。 她是一名调查记者,负责各种行业内的技术、犯罪事件、公司规划和发展以及政府相关报道。 她的工作地点位于旧金山。
您可能感兴趣的文章
  • 都在围观最新CPU/GPU,Arm中国这个动向你可曾关注? “孙正义曾说大约在2035年左右,全球可能会有1万亿个在线连接的AIoT设备。坦白的讲,这并不是一个很激进的数字。”Arm中国生态发展副总裁、OPEN AI LAB创始人兼CEO金勇斌日前在接受媒体采访时称,从1991年到2017年,Arm花了26年的时间才实现了1000亿片Arm架构芯片的出货。
  • 催生更强AI,科学家致力破解人脑运算之谜 神经形态芯片面临的一大难题,是研究人员仍不知道大脑究竟是如何学习...
  • 利用本性、借力培育打造令人惊叹的AI SoC 将高级AI功能集成到SoC中经常会暴露SoC架构的软肋。 SoC的DNA(其“本性”)强壮程度依赖于其设计环境(其“培育”)所赋能。了解如何选择合适的工具和流程,特别是正确的IP,可以帮助你培育表现出色的AI SoC。探索Synopsys的 DesignWare IP,可助你实现令人惊艳的AI。
  • AI从云端走向边缘需要这样一颗芯片 人工智能(AI)在自动驾驶、物联网和机器人技术中的应用离不开数据处理。目前终端设备需要将采集的大量数据,包括图像、视频、音频等,通过网络传输至数据中心进行AI相关的处理,然后再将结果返回至终端设备。这就带来了网络带宽、数据传输稳定性及安全性等问题。
  • Flex Logix 发布InferX™ X1 8TOPS高性能,低功耗,低成本 2019年4月10日, Flex Logix Technologies, Inc. 宣布,其在拥有数个专利的业界领先的eFPGA互连技术上,结合专为AI推理运算而优化的nnMAXtm乘加器(MAC), 研发了 InferXtm X1边缘推理芯片。
  • 魏少军:以非对称技术赢得发展主动权 在2017年度大中华IC领袖峰会上,魏少军教授受邀作主题为“中国IC设计产业宏观众分析和未来发展方向”的主题演讲。由于魏教授临时收到特别任务,他将本次演讲的PPT授权给电子工程专辑总分析师Yorbe Zhang代为演讲。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告