向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

负负得正?两个绝缘体合成一个超导体

时间:2016-08-08 作者:R. Colin Johnson 阅读:
美国研究人员发现,两个绝缘体接口可以变成超高电子密度的导体…

负负相乘得正,同样两个绝缘体接口,也可以变成超高电子密度的导体──美国犹他大学(University of Utah)以及明尼苏达大学(University of Minnesota)的研究人员发现,该接口乘载的电子气体(electron gas),在电子密度上优于石墨烯(graphene)以及氮化镓(gallium nitride)。h9QEETC-电子工程专辑

上述超导体可实现较小型、发热较低以及功耗较低的晶体管,免除充电变压器的需求;还有太赫兹(terahertz)调变器。不过,并非任何一种绝缘体都会达成相同的效果,犹他大学教授Berardi Sensale-Rodriguez以及明尼苏达大学教授Bharat Jalan所采用的复合氧化物,是在商用LaSr基板上生长的钛酸锶(strontium titanate,SrTiO)与之上的钛酸钕(neodymium titanate,NdTiO),即下图的NTO/STO。
20160805 conductor NT02P1
*在穿透式电子显微镜(TEM)下的钛酸钕(NdTiO3)、钛酸锶(SrTiO3)绝缘体,以及下方的La0.3Sr0.7基板(NTO/STO/LSAT)
(来源:Applied Physics)*h9QEETC-电子工程专辑

除了以上的配方,其他研究团队也在进行相关研究,以各种其他复合氧化物来展现类似的电子气体现象。Sensate-Rodriguez接受EE Times访问时表示,复合氧化物实际上是许多研究团队关注的题目,举例来说,在美国加州大学圣塔芭芭拉(University of California Santa Barbara)分校就有经验丰富的研究团队,还有康奈尔大学(Cornell)以及日本的团队。h9QEETC-电子工程专辑

不过Sensate-Rodriguez强调,没有其他团队达成像他与明尼苏达大学教授Bharat Jalan所展现的如此高电子密度;他们的合作始于Jalan先前对高电子密度材料的研究发现,于是Sensate-Rodriguez提议利用Jalan的方法,以石墨烯样本进行评估(太赫兹光谱学),以判定其精确的电子密度并尝试解密其机制。h9QEETC-电子工程专辑

“根据我先前对石墨烯的研究经验,我预期会看到比利用DC量测所提取的更大传导性,因为太赫兹光谱学能更接近期内在特性,也就是材料的基础限制;”Sensate-Rodriguez表示,最后他们发现,在氧化物接口产生的2D电子气体之传导性,不但媲美石墨烯与氮化镓,更有趣的是,氮化镓与那些氧化物都能受益于大型击穿电场(breakdown field),因此很适合应用于电力电子。h9QEETC-电子工程专辑

此外两位教授还推论,复合氧化物接口产生超高电子密度的机制与氮化镓并不相同;Sensate-Rodriguez表示,氮化镓的高传导性是材料内高迁移率的产物,但是在NTO/STO内的高电子密度,则是两种不差的迁移率结合之结果:“这是两种产生类似结果、基本上却完全不同的机制,因为材料的传导性取决于电荷密度以及电荷的迁移率。”
20160805 conductor NT02P2
*复合氧化物材料特性,详情请参考:http://research.cems.umn.edu/jalan/Jalan_research_group/Home.html
(来源:University of Minnesota)*h9QEETC-电子工程专辑

Sensate-Rodriguez与Jalan对NTO/STO材料如此乐观看待的原因,来自于这种全新发现的材料架构在还没有优化的情况下,导电性能就已经媲美氮化镓甚至石墨烯,若进一步优化,其导电性能也可望大幅提升:“还有很多优化步骤可以做,特别是在材料的生长上;目前高质量样本的纳米与微米等级导电性,与在氮化镓或石墨烯材料上看到的都差不多。”h9QEETC-电子工程专辑

研究人员也看好这种新材料能超越传统氮化镓的应用领域,可望实现例如电动车或是迷你化电源供应器适用的更小尺寸、电流消耗更小、发热温度更低的电力电子;此外NTO/STO材料在太赫兹范围的成功调变,也可望让例如机场安检扫描机尺寸大缩水,或是在敏感度上大幅提升。Sensate-Rodriguez指出:“在应用上,我认为有两个方向,一是电力电子、一是太赫兹装置例如调变器;但目前一个重要的研究方向,是如何有效调节电荷以实现主动组件。”
20160805 conductor NT02P3
*犹他大学教授Berardi Sensale-Rodriguez
(来源:University of Utah)*h9QEETC-电子工程专辑

编译:Judith Chengh9QEETC-电子工程专辑

本文授权编译自EE Times,版权所有,谢绝转载h9QEETC-电子工程专辑

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。
h9QEETC-电子工程专辑

h9QEETC-电子工程专辑

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
R. Colin Johnson
EETimes前瞻技术编辑。R. Colin Johnson自1986年以来一直担任EE Times的技术编辑,负责下一代电子技术。 他是《Cognizers – Neural Networks and Machines that Think》一书的作者,是SlashDot.Org的综合编辑,并且是他还因对先进技术和国际问题的报道,获得了“Kyoto Prize Journalism Fellow”的荣誉。
您可能感兴趣的文章
  • 究竟哪种AC适配器性能最优:GaN、SiC还是Si? 目前,移动设备并不像我们想象的那样具有移动性。每个移动设备都需要定期重新连接AC适配器,为其锂离子电池充电。根据TechInsights对三个主要产品的分析,有效的大功率、紧凑型AC适配器可以采用碳化硅(SiC)、氮化镓(GaN)和硅超结这三种材料来设计制造。究竟哪种AC适配器性能最优呢?
  • GaN在2019年的发展,你需要了解的有这些 为您回顾了今年氮化镓(GaN)的动态,包括市场分析、技术方案、深度连载三个部分共18篇文章。
  • 为增强型GaN功率晶体管匹配门极驱动器 氮化镓(GaN)是最接近理想的半导体开关的器件,能够以非常高的能效和高功率密度实现电源转换。但GaN器件在某些方面不如旧的硅技术强固,因此需谨慎应用,集成正确的门极驱动对于实现最佳性能和可靠性至关重要。本文着眼于这些问题,给出一个驱动器方案,解决设计过程的风险。
  • 氮化镓(GaN)晶体管满足数据中心和通信机房的功率要求 GaN的理论优势正在主流设计中得以实现,尤其是在数据中心和通信机房电源两个应用领域,与硅器件相比较,GaN的优势更明显。采用GaN进行产品设计,厂家和用户都将能享受到系统成本和运营方面的好处。本文着重对使用增强型GaN与硅基器件进行大功率电源设计进行比较,发现GaN器件能实现更高效率和功率密度,且不会增加系统成本。
  • 宜普(EPC)CEO专访:氮化镓(GaN)在快充/无线充电和5G基站 《电子工程专辑》主分析师顾正书在撰写9月刊有关氮化镓(GaN)的封面专题时,书面采访了Alex Lidow,因为他及宜普公司是推动氮化镓(GaN)器件商业化发展的主要力量之一。现将采访内容汇总如下,希望为感兴趣的读者提供有价值的信息。
  • 集成的GaN器件将性能提升到新的水平 最近的半导体行业发展,比如宽禁带半导体商业化的显着增长,已经凸显出一个事实,即GaN现在已经可以大批量生产。这种材料工艺尽管尚未成熟,但GaN器件早已不是一项新技术。封装已经非常标准化,产量也比较高了,而且价格也在不断降低。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告