广告

用GaN造出的功率放大器最适合5G技术

时间:2016-08-23 作者:Christoph Hammerschmidt 阅读:
德国弗劳恩霍夫应用固体物理研究所(Fraunhofer IAF)近日开发出实现5G网络不可或缺的建构模块:以氮化镓(GaN)技术制造的高功率放大器晶体管...
广告
ASPENCORE

下一代移动无线网络——5G,将为需要极低延迟的间和/或高达10Gbps数据传输速率的创新应用提供平台。德国弗劳恩霍夫应用固体物理研究所(Fraunhofer Institute for Applied Solid State Physics,Fraunhofer IAF)近日开发出实现5G网络不可或缺的一种建构模块:以氮化镓(GaN)技术制造的高功率放大器晶体管。krLEETC-电子工程专辑

Fraunhofer的研究人员Rüdiger Quay表示,芯片上的特殊结构可让基地台设计人员以极高的电压(较一般更高的传送功率)执行该组件。在其Flex5Gware计划中,Fraunhofer IAF已经开始在6GHz频率展开组件的原型测试了。krLEETC-电子工程专辑

在这一类的应用中,能量需求取决于传输带宽。Quay解释,所传送的每1位都需要稳定且一致的能量。由于5G可实现较现有商用行动无线基础架构更高200倍的带宽,因而有必要大幅提高用于传统5G高带宽讯号的半导体组件能效。krLEETC-电子工程专辑

除了创新的半导体,研究人员们还使用高度定向天线等措施来提高能量效率。krLEETC-电子工程专辑

在金属加工工艺中产生的副产品——镓(Gallium)十分普及。包含GaN的白光与蓝光LED也有助于提高GaN的产量,使得GaN成为当今一种更可负担的组件。其结果是,Fraunhofer IAS指出,相较于硅(Si)组件,GaN组件由于在整个产品寿命周期已超过其更高的制造成本,因而实现更节能的组件。krLEETC-电子工程专辑

编译:Susan HongkrLEETC-电子工程专辑

本文授权编译自EE Times,版权所有,谢绝转载krLEETC-电子工程专辑

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。
krLEETC-电子工程专辑

krLEETC-电子工程专辑

ASPENCORE
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Christoph Hammerschmidt
Christoph Hammerschmidt负责EE Times Europe的汽车相关内容。
  • 纳芯微推出基于电容隔离技术的隔离误差放大器NSi3190 高可靠、高性能、低成本,打破模拟电源小型化瓶颈。
  • GaN IC:推动分立式晶体管走向尽头 采用分立式氮化镓器件或分立式MOSFET器件的设计工程师,现在可以改用GaN集成电路以节省时间、占板面积及提升他们的系统性能,从而实现具备更高的功率密度、更高的效率及更具成本效益的先进设计。当氮化镓集成电路开始集成多个驱动器、保护电路、控制电路及功率晶体管于单个芯片上时,设计师会逐渐减少分立式晶体管的使用。这是分立式晶体管走向尽头的开始。
  • 没有电容计,如何测量未知电容? 本文介绍的测量方法与各种SPICE模型的仿真相关。建议在实际电路中采集数据。用户可以根据所需的电容值,自由地创建数学模型;当然还要考虑瞬态等待时间和RC时间常数,因为这些因素可能导致长时间的等待。建议尝试根据需要更改电子元件的值。
  • 手把手教你构建可调线性AC-DC电源 双输出低噪声电源对于电子发烧友来说是一个必不可少的工具。在许多情况下都需要双输出电源,例如设计前置放大器和为功率运算放大器(OPAMP)供电等。在本文中,我们将构建一个可供用户独立调节正负轨的线性电源,在其输入端采用普通的单输出交流变压器即可。
  • 如何轻松稳定带感性开环输出阻抗的运算放大器? 一些运算放大器(运放)具有感性开环输出阻抗,稳定这一类运放可能比阻性输出阻抗的运算放大器更为复杂。最常用的技术之一是使用“断开环路”方法,这涉及到断开闭环电路的反馈环路和查看环路增益以确定相位裕度。一种鲜为人知的方法是使用不需要断开环路的闭环输出阻抗。在本文中,我将讨论如何使用闭环输出阻抗来稳定带阻性或感性开环输出阻抗的运算放大器。
  • 【资料汇总】全方位学习ADC/DAC 许多初步了解模数转换器(ADC)的人想知道如何将ADC代码转换为电压。或者,他们的问题是针对特定应用,例如:如何将ADC代码转换回物理量,如电流、温度、重量或压力……
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了