广告

放大器反馈电阻:先斟酌,再选择!

时间:2017-03-03 作者:Tina Collins 阅读:
我正在为我的精密信号路径选择运算放大器。速度是不是越快越好?
广告

为单端电压反馈型和全差分放大器选择反馈电阻(RF)时,需要考虑系统要求。选择RF时应权衡考虑功耗、带宽和稳定性等因素。如果速度很关键,正如“关于电压反馈型电阻的真相”中所讨论的结论,建议采用数据手册中的RF值。如果功耗很关键,并且系统要求较高的增益,则较大的RF可能是正确的选择。

RF的选择随着增益的提高而增大。增益较高时,放大器内部电容和反馈电阻之间的失稳效应减弱。当增益提高时,放大器对增益峰化不太敏感。

图1的示例显示A D A 4 8 07-1归一化频率响应的实验室结果, ADA4807-1是具有低噪声、轨对轨输入和输出的电压反馈型放大器, 采用同相配置,RF为10 kΩ,增益分别为11 V/V、21 V/V和31 V/V。

小信号频率响应中的峰化程度表示不稳定性。将增益从11 V/V提高 到31 V/V会使峰化小于1 dB。这意味着RF为10 kΩ的放大器具有充足 的相位裕量,在较高增益下较稳定。

ADI17030301
图1. RF= 10 kΩ时不同增益的实验室结果。VS= ±5V,RLOAD= 1 kΩ,增益分别为11 V/V、21 V/V和31 V/V。

ADI17030302
图2. 使用ADA4807 SPICE模型的仿真结果。RF= 10 kΩ,VS= ±5 V,RLOAD= 1 kΩ,增益分别为2 V/V和31 V/V。

在实验室中验证电路不是检验潜在不稳定性的强制步骤。图2显示 使用SPICE模型的模拟结果,增益分别2 V/V和31 V/V。其中显示使用 大增益电阻(如增益为2 V/V的10 kΩ电阻)的不稳定性,并对比具有 相同RF但增益为 31 V/V的情况。图3显示时域中增益为11 V/V、21 V/ V和31 V/V的结果。

ADI17030303
图3. 使用ADA4807 SPICE模型的脉冲响应仿真结果。VS= ±5 V,RF= 10 kΩ; G = 11 V/V、21 V/V和31 V/V,RLOAD= 1 kΩ。

选择RF时进行系统权衡考量。为了充分实现系统的性能,选择的RF是否合适取决于稳定性、带宽和功耗等系统要求。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 用碳化硅MOSFET设计一个双向降压-升压转换器 随着电池和超级电容等高效储能设备的大量使用,朝向更好的电流控制发展成为一种趋势。双向DC/DC转换器可以保持电池健康,并延长其使用寿命。
  • 集成动态过流检测的智能锁电机驱动器设计方案 本文介绍了使用高电压GreenPAK的一个特定示例,描述了针对特定电机和电池组的集成设计定制方法。这是一种非常灵活的电机控制解决方案,采用可配置的内部逻辑,可满足设计人员的需求。而且将电机驱动器集成进GreenPAK中,可以将整个电路放入很小的物理空间。
  • 设计开关电源之前,必做的分析模拟和实验(之二) 环路控制是开关电源设计的一个重要部分。文章综述了目前可供选择的一些工具,让您在开始生产开关电源之前能够计算、模拟和测量您的原型,从而确保生产工作安全顺利。本文将主要讨论获取功率级动态响应和选择交越频率和相位裕度。
  • 采用片上网络(NoC)的新型FPGA数据架构赋能5G网络和数据 从5G网络的边缘到数据中心内部的交换机,通信和网络系统对芯片的功能带来了极大的压力,以支持其所需的计算能力和数据传输速率。传统的可编程逻辑为这些系统提供了灵活性和速率的最佳组合,但是近年来却因以太网等协议的速度提高到100G和400G而面临新挑战。
  • CMOS传感器在3D视觉、感测和度量中的应用 工厂已进入自动化工作,以提高产能和在产品查验和库存的方方面面节省时间和金钱。要优化这些因素,拥有视觉系统的机器需要更高速和以更佳性能工作。因应这些发展,2D视觉遇上了限制,使得3D视觉被广泛引进,以实施更高精度的质量检验,反向工程或物件量度任务。三角测量技术正在这些应用中获大量使用,鉴于三轴图像要求高分辨率,需要非常高速的的传感器。
  • 在开关电源转换器中,如何充分利用SiC器件的性能优势? 碳化硅MOSFET越来越多用于千瓦级功率水平应用,涵盖如通电源,和服务器电源,和快速增长的电动汽车电池充电器市场等领域。碳化硅MOSFET之所以有如此的大吸引力,在于与它们具有比硅器件更出众的可靠性,在持续使用内部体二极管的连续导通模式(CCM)功率因数校正(PFC)设计
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了