向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

只靠编程不行,全面启动AI需破解人脑奥秘

时间:2017-07-27 作者:R. Colin Johnson 阅读:
DeepMind的远大计划是藉由解密人脑使用的算法、架构、功能以及表征,来解决目前开发人工智能技术遭遇的问题。

Google专长人工智能的姊妹公司DeepMind Technologies首席执行官Demis Hassabis,透露该公司的远大计划是藉由解密人脑使用的算法、架构、功能以及表征(representation),来解决目前开发人工智能技术遭遇的问题。
demis_h_175_1501012376
Demis HassabispEyEETC-电子工程专辑

目前没有人对人工智能(AI)神经网络的基本原理提出质疑,也就是透过突触(synapse)连结的大脑神经元有不同的联机“权重”(weights),当神经元经常被使用、其权重就会更强劲成长(即学习),反之如果很少用就会萎缩(于是会遗忘)。举例来说,欧盟的Blue Brain项目就是试图在超级计算机上巨细靡遗模拟人类大脑运作,期望藉此揭开例如帕金森氏症、阿兹海默症(失智症)等疾病的幕后成因,以及打造AI系统。pEyEETC-电子工程专辑

Hassabis认为,若我们想要看到AI芯片(总之不是活的有机体),工程师就得搞懂人脑所使用的算法、架构、功能与表征。“从工程的角度来看,以上是最终解决方案;而为了达到我们的目标,生物赞同性(biological plausibility)只是指导,并非严格的要求;”Hassabis在同侪审查学术期刊《Cell》与共同作者发表的“神经科学启发之人工智能”(Neuroscience-Inspired Artificial Intelligence)一文中写道:“我们感兴趣的是对人脑在系统神经科学层面上的理解,也就是所利用的算法、架构、功能以及表征。”pEyEETC-电子工程专辑

Hassabis表示:“透过聚焦运算与演算层面,我们取得对大脑功能内部大致机制的可转移见解,同时留下空间以容纳在芯片内打造智能机器时会出现的机会与挑战。”举例来说,在睡眠期间,大脑的海马回(hippocampus)会回放并重新关联每天曾经发生过的、特别成功的学习经验,让长期内存能取得学习教训,甚至只从单一实例。pEyEETC-电子工程专辑

简单的机器学习算法会用杂乱无章的不重要细节洗掉单一学习实例;而DeepMind则声称,能够打造模仿实际人脑功能的机器学习算法;如Hassabis与其他论文作者所言:“储存在缓冲存储器中的经验,不只能被用来逐步调整深度网络参数以符合优化策略,也能支持根据个人体验产生的快速行为变化。”pEyEETC-电子工程专辑

因为学习算法倾向于以新知识覆盖现有知识,使得让神经元计算机学习多级(multistep)任务成为工程师们的棘手挑战;对此上述论文的作者指出,最近的研究透过协同神经科学与工程的方法来解决这个难题。神经科学家对人脑突触不稳定性(lability,也就是变化的变异率)的发现,为AI工程师提供了一种实现多级学习的新工具──他们在打造学习算法时,设定了较早期任务的不稳定性,以防止较新的任务将之覆写。pEyEETC-电子工程专辑

“神经科学的发现启发了AI算法的开发,透过设置一种具弹性的权重固化(consolidation),克服了深度神经网络持续学习的挑战;这种固化机制是透过减缓一组被定义为对先前任务很重要的网络权重子集中的学习来达成,因此能将那些参数固定在先前发现的解决方案。”论文作者表示:“这能允许在不增加网络流量的情况下进行多个任务的学习,而拥有相关联架构的任务之间可有效分享权重。”pEyEETC-电子工程专辑

Hassabis与其他论文作者并指出:“要填补机器智慧与人类智慧之间的鸿沟,还有很多工作得做;在这方面,我们相信来自神经科学的一些想法,将会越来越不可或缺。”他们举例了工程师透过重现生物机制实现AI多级学习的成功,并呼吁神经科学家与AI工程师并肩作战,携手解决或许可说是AI研究中最困难的挑战──打造能进行分层规划的代理(agent),要真正具备创造性,而且能为目前人类也无解的挑战提供解决方案。pEyEETC-电子工程专辑

然而也不是所有人都同意,只要能理解人脑的算法、架构、功能与表征,就能揭开人类拥有智慧的奥秘;有人认为,人脑的“编码”(code)跟所有宇宙中的生命智慧都是相同的,就如同化学拥有通用的编码,因此大脑的智能编码会是类似化学与物理学,在人体中交织的通用原理。
Starmind_Pascal Kaufmann
*Starmind International创办人Pascal Kaufmann认为,人脑的编码应该不像是算法,因为人脑并不同于计算机
(来源:Starmind)*pEyEETC-电子工程专辑

“我们需要透过对人类智慧的真实理解,才能破解人脑的编码,这不能只靠计算机软件;”身为神经科学家的瑞士AI软件公司Starmind International创办人Pascal Kaufmann表示:“就像物理学是宇宙中所有物理现象的编码,人脑的编码也会是根据自然界的通用原理。”他指出,在自然界有相同的原理一再出现,例如树木的分枝与人体血管的静脉/动脉就非常相似:“我们只需要问正确的问题。”pEyEETC-电子工程专辑

编译:Judith ChengpEyEETC-电子工程专辑

本文授权编译自EE Times,版权所有,谢绝转载pEyEETC-电子工程专辑

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。
pEyEETC-电子工程专辑

pEyEETC-电子工程专辑

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
R. Colin Johnson
EETimes前瞻技术编辑。R. Colin Johnson自1986年以来一直担任EE Times的技术编辑,负责下一代电子技术。 他是《Cognizers – Neural Networks and Machines that Think》一书的作者,是SlashDot.Org的综合编辑,并且是他还因对先进技术和国际问题的报道,获得了“Kyoto Prize Journalism Fellow”的荣誉。
您可能感兴趣的文章
  • 浙江大学牵头研发,类脑芯片“达尔文2”发布 日前,脉冲神经网络类脑芯片“达尔文2”以及针对该芯片的工具链、微操作系统在杭州发布。该芯片主要面向智慧物联网应用,单芯片支持的神经元规模达15万个,在神经元数目上相当于果蝇的神经元数目,是目前已知单芯片神经元规模居全国前列的脉冲神经网络类脑芯片。
  • 机器学习/AI热潮席卷Hot Chips 2019 Hot Chips一向是处理器产业尖端技术与最新发展趋势的风向球,今年也不例外。如果说Hot Chips 2019是否透露任何迹象,那就是这一场机器学习/ AI芯片革命正方兴未艾…
  • 初创公司用整块晶圆做出史上最大芯片 初创公司Cerebras将在Hot Chips上展出号称是“世界上最大”的半导体器件——一个16nm工艺、晶圆大小的处理器阵列,旨在取代英伟达(Nvidia) GPU在训练神经网络方面的主导地位。这颗面积达到46,225平方毫米的芯片功耗为15千瓦,封装了400,000个内核,并且仅支持在极少数系统中运行,至少已有一家客户采用……
  • 哪些机器人可以用于垃圾分类? 尽管上海垃圾分类已经开始“强制”执行,但很多居民仍然常常难以分辨自己的垃圾该归为哪类,在误投的情况下,还得依靠环卫工人手动把垃圾分好类。随着人工智能和物联网等技术的迭代升级,未来会不会有专门分辨、分拣和处理不同垃圾种类机器人融入我们的生活,让我们不再每天接受“你是什么垃圾”的灵魂拷问?
  • 有关麒麟810和华为nova 5,有些事华为没告诉你 “因为夜的黑,光才被衬托得更美。”这话其实是用来形容华为nova 5系列手机的拍照能力的,不过在现如今这个国际环境大背景下,倒似更有深意了,也更符合华为现在的处境。华为消费业务手机产品线总裁何刚在华为nova 5系列产品发布会上,说出这句话的时候,发布会所在地的武汉还在下着小雨。
  • 都在围观最新CPU/GPU,Arm中国这个动向你可曾关注? “孙正义曾说大约在2035年左右,全球可能会有1万亿个在线连接的AIoT设备。坦白的讲,这并不是一个很激进的数字。”Arm中国生态发展副总裁、OPEN AI LAB创始人兼CEO金勇斌日前在接受媒体采访时称,从1991年到2017年,Arm花了26年的时间才实现了1000亿片Arm架构芯片的出货。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告