广告

使用这些探测小贴士来改善功率转换测试

时间:2017-10-30 14:05:41 作者:Wilson Lee,泰克科技公司 阅读:
几乎在功率转换器的每个部分都存在损耗源,关键区域通常包括开关半导体、磁性元件和整流器。即使性能只改进了几个百分点,甚至是不到百分之一,可能也会具有重大的意义……
广告

今天的电源设计人员和测试工程师都在努力寻找非常小的渐进改良方案,来提高功率转换效率,或降低设计中的损耗。这要求能够准确评估和测量非常小的性能提高。

几乎在功率转换器的每个部分都存在损耗源,关键区域通常包括开关半导体、磁性元件和整流器。即使性能只改进了几个百分点,甚至是不到百分之一,可能也会具有重大的意义。而为了准确评估和测量这么小的性能提高,异常准确的测量至关重要。

大多数示波器都带有10X衰减无源探头,因为这种探头适合在各种各样的应用中进行测量。这些探头的额定带宽一般为DC ~ 500 MHz,一般能够测量高达几百伏的电压。当然使用通用探头进行功率测量也是可以的,但与这些专为功率应用设计的探头相比,其不可能提供所需的精度,来推动改善功率转换性能。

信号灵敏度

我们看一下通用探头存在短板的实例。在电源设计和测量中,一个常见的挑战是把噪声与纹波电压隔开。在本例中,我们要使用通用10X探头探测3.3 V电源。问题在于, 10X探头没有提供足够的灵敏度,触发波形中存在的周期噪声。这些探头非常适合许多通用电子测量,因为它们提高了示波器的电压范围,提供了相对较高的带宽。

然而,为了测量几十毫伏的小信号, 1:1 (1X)探头会是更好的选择,因为它导致的信号衰减不大,不会把信号向下推进到示波器的噪底。遗憾的是,这种灵敏度优势被它的带宽劣势抵消了,其带宽通常只有15 MHz左右。如果这种带宽对测量不够,那么最好使用无源2X探头。

事实证明,在这种应用中,2X探头是正确的选择。看一下图1中的波形。黄色轨迹是10X探头,它调整到每格10 mV的最低垂直设置;蓝色波形是2X探头。可以把2X探头调节到每格2 mV的最低垂直设置。由于电源输出会产生3 mV纹波的信号,因此很明显,10X衰减的探头不太适合这种测量。
20171030-tek-1
图1. 使用2X探头(蓝色轨迹)和10X探头(黄色轨迹)测量3.3 V电源。

差分测量

上面讨论的纹波测量,只是电源设计和调试中能够安全高效地使用单端(参考地电平)探头的诸多应用中的一种。但许多功能转换测量要在浮动环境中完成,这些应用中是不能参考地电平的。

图2指明了没有绑到接地,要求差分测量技术的多种常见的功率转换测量:

  1. MOSFET上的漏极到源极电压(VDS)
  2. 续流二极管上的二极管电压
  3. 电感和变压器电压
  4. 未接地的电阻器中的电压降
    20171030-tek-1

图2. 推/拉功率转换器上的部分差分测量点。

可以通过多种方式执行差分测量,包括:

• 使用两只单端探头,计算电压差

• 使用带有专门设计的浮动输入的示波器

• 选择与测量最匹配的差分探头

使用两只单端探头

一种常用技术是使用两只单端探头,每只探头的地线接地,并在被测元件的两侧尖端,如图3所示。然后把示波器设置成显示通道1和通道2之差。这有时称为 “A-B”,它使用示波器中的数学运算来显示两条通道的电压差。在需要进行差分测量,但没有合适的测试设备时,工程师有时会使用这种技术。
20171030-tek-2
图3. 使用两只单端探头进行准差分测量。

这种方法有几个问题。只有在探头和示波器通道非常匹配时(包括增益、偏置、延迟和频响),这种方法才会得到很好的测量结果。该方法不能提供非常好的共模抑制(清除两个输入共有信号的任何AC部分或DC部分)。此外,如果两个信号没有正确定标,可能会出现示波器输入过载的情况,得到错误测量结果。

使用浮动输入

我们也可以使用“浮动”示波器。这些示波器的每条输入通道在电气上与机箱接地隔离,然后示波器使用电池供电。示波器机箱到接地的寄生电容也非常低。浮动示波器的这些隔离特点,可以使用一只绝缘的无源探头来进行差分测量。这些仪器非常方便,使用简便,效果好。但是,差分电压探头的电容较低,要求高度平衡。

匹配的差分探头

为获得最好的测量精度,使用技术指标与测量任务相匹配的差分探头通常是最佳的选择。差分探头是有源器件。它们在探头尖端有一个专门设计的差分放大器,只测量经过两个测试点的电压,而不管任一测试点和接地之间的电位是多少,这就大大简化了探测任务,消除了某些可能的误差来源。另外,由于它们只测量差分电压,因此它们还可以忽略并清除可能存在的共模AC摆幅或DC偏置电压。

由于被测器件(DUT)不同部分的测量可能有着完全不同的要求,因此必须审慎地选择探头。在图4所示的实例中,手边的任务是测量被测电源MOSFET开关器件的开机损耗、关机损耗以及传导损耗。图4是带有测量点TP1和TP2的MOSFET的简化示意图。
20171030-tek-3
图4. 带有多个测试点的MOSFET的简化示意图。

被测器件是一种“通用”电源,设计为从世界各国的AC线路(或“市电”)电压供电。仅此一项,就给工程师的测试要求及测试设备提出了多项要求:

• 这种器件的额定输入电压一般在80 VAC ~ 250 VAC或更宽。为表征全球各种输入电压下的性能,不仅要执行一项测量,还要在多种输入电压下执行一系列测量。这适用于被测试的每个性能参数。开关特点(及相应损耗)预计在每个输入电压上都不同,可能不会以线性方式变化。这不仅提高了要执行的测量总数,还需要在测量之间实现可重复性。

• 由于输入供电电压高达250 VAC,开关MOSFET中漏极和源极之间的电压预计会达到354 V或更高。探测解决方案必需拥有足够的通用性,来测量这些电压以及在某些测试中还要能够测量低得多的电压。

被测电源的开关速率为250 kHz。根据测量带宽常用的5倍法则,这相当于要求1.25 MHz的测量带宽。但这是现实世界信号速度的简化版,因为开关器件的实际上升时间预计会超过它一个量级。同样,可能还要考察尖峰、瞬态信号和其他噪声。如果要测量上升时间为几十纳秒的信号,那么探头的上升时间应在几纳秒。为在这个应用实例中准确地进行测量,测量系统的带宽应在350 MHz或更高。

小结

选择最好的探头与应用关系密切,因此必须了解应用的测量要求,确保探头与工作完全适应。对许多功率电子测量来说,差分探头是一个明确的选择,特别是没有参考地电平的测量。对参考地电平的测量,单端探头是一个很好的选择,但注意不要使用10X探头,以免过度衰减小信号。对低压信号,如纹波,最好使用1X探头或2X探头。

关于作者
20171030-tek-2
Wilson Lee现任泰克科技公司高级市场经理。在加入泰克科技公司之前,Wilson拥有超过25年的专业经验,先后担任技术市场、技术销售主管等职位,如CTS电子元器件公司等制造商,以及Richardson RFPD和Premier Farnell等技术/增值分销商。Wilson一直专注于RF/无线、工控电源、工控自动化等细分市场内部的设计工作。

Wilson从康奈尔大学获得理学学士学位。While在从业期间先后居住在纽约、芝加哥和亚洲,目前常住美国俄勒冈州大波特兰。

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 利用电流互感器作为低成本非侵入式定时触发器 如今,步进电机已广泛应用于工业仪器设备等各类应用中,但步进电机的运动检测是一个问题。本文介绍了电机运动检测的限制,并介绍了一种独特的设计-电感耦合触发电路,可以通过选择合适的磁芯材料来满足各种带宽要求。
  • 开发板历史及与单板计算机(SBC)的区别,未来或成最终产 在本文中,我们将解释“开发板”这个术语的含义,首先需要明确定义开发板的含义以及它们与单板计算机的区别。如今,单板计算机主要分为两类:专有型和开源型……
  • 如何实现精密低信噪比、低电平信号测量?从锁相放大器 通常来说信噪比越大,夹杂在有效信号中的噪声便越小,可以提取到的有效信号质量就会越好;一般的信号系统信噪比达到 100dB 以上 ,音响系统就可以达到 120-130dB 左右; 而当信噪比在达到 -50 或者 更低至-60dB一下的情况下,提取的信号相对于噪声信号是非常小的,有没有可能检测这种微弱信号呢?
  • IGZO基底无电容DRAM单元前景看好 传统DRAM的功率密度受限于存储电容尺寸和晶体管截止电流。本文提出了一种新的2T0C无电容架构,使存储器的功率密度大幅提高,并实现了优异性能-超过103秒的数据保持时间以及无限的耐用性。可为人工智能、物联网、云计算等数据密集型应用提供足够的存储容量。
  • 如何选择合适的软件无线电解决方案 SDR凭借灵活的配置能力,弥补了模拟无线电在鲁棒性、集成度以及灵活性等诸多方面的限制,已广泛应用于从雷达、通信、医疗以及测量等多种应用。但SDR种类繁杂,如何选择正确的SDR和/或完整的系统,对基于射频的应用至关重要。针对SDR的各种参数,以及如何将设计从纸面快速变为现实,本文给出了详细阐述。
  • 利用SPICE进行放大器稳定性分析的两种方法 SPICE仿真中,稳定性分析的典型方法是在反馈回路中插入交流断点,然而插入断点的具体位置,可能会对仿真的准确性产生较大的影响。本文介绍了工程师常用的两种断点插入方法,以及各自的优缺点。并阐释了两种方法仿真结果差异的原因,同时也给出了如何使两种方法等效的具体办法。
  • 新款iPad Pro 2021成最受欢迎的 由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
  • 三星折叠屏手机Galaxy Z Fold 3 目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。
  • 类脑芯片与智能座舱深度融合,时识科 类脑智能与应用解决方案提供商SynSense时识科技宣布与宝马展开技术探索,推进类脑芯片与智能座舱应用场景的深度融合。双方将主要围绕SynSense时识科技基于类脑技术的“感算一体”动态视觉智能SoC——Speck,探索汽车内外相关车载智能应用创新。
  • 美光:智能边缘应用的供应链和汽车架 随着数十亿台设备产生的数据和洞察力不断激增,智能边缘也随之崛起
  • 2022半导体春季线上招聘会开始啦!  中国半导体论坛 振兴国产半导体产业!   2022半导体行业春季招聘开始啦,海量职位等你来!最新招聘职位:1.设备工程师  15000-300002.工艺工程师  15000-300003.电气工程
  • 缺芯:后疫情时代芯片行情深度剖析 本文来源:5G行业应用2020年以来疫情席卷全球,整个芯片行业如同过山车一般,从2020年Q1的需求锐减到2020年Q3开始逐步缺货,发展到2021年呈现“涨价”、“扩产”、“缺货”几大关键词,行业景
  • 俄罗斯第一芯片制造商被美国封杀! 最新消息,刚刚美国财政部外国资产控制办公室 (OFAC) 宣布对俄罗斯21家实体企业和13个个人实施制裁,其中包括俄罗斯第一芯片制造商、微电子制造商和出口商Mikron。美国财政部的声明指出,今天制裁
  • Wi-SUN,为智慧城市而生的无线协议! 作者 | Silicon Labs无线产品营销经理Asem Elshimi在全球对提高可持续性、减少温室气体排放和废弃物以及有效利用资源的需求推动下,世界各地的城市正在大踏步的向智慧城市转型。智慧城市
  • 西门子EDA直播报名|从设计到测试,如何应对2.5D/3D验证的挑战(4月21日免费) 异构封装虽好,这些问题解决了吗?一个芯片里面有成千上万个晶体管,电阻,电容,任何一个小错误都可能导致最终的流片失败。从设计、仿真验证、测试每一个步骤都充斥着未知的风险。首先设计过程中,传统的封装的ba
  • 瞎充集团启动“共享充电宝+共享电商”双引擎 瞎充集团,深耕互联网、金融、共享租物领域已经10年时间了,企业的发展经历了探索、电商创业、金融支付转型、研发、核心技术沉淀、扩张、数字化二次转型等 7个阶段。如今的瞎充集团,屹立在中国商业科
  • 柔宇科技已6个月发不出工资!  中国半导体论坛 振兴国产半导体产业!   点击链接:2022春季半导体线上招聘会开始啦!4月1日消息,曾经估值超过500亿的独角兽柔宇科技被曝出已拖欠员工6个月工资!据报道,柔宇科技一员工称,从去年
  • 2022年,中国经济活起来!8万亿重大项目密集开工 来源 |  《中国经济周刊》 记者 | 杨琳 封面/制造界秀二拍摄目前,全国多地已陆续公布今年的重大项目名单,并以此为抓手,在先进制造业、基础设施建设、"两新一重"等重点领域的项目集中开工,全力冲刺一
  • 大基金减持2家公司!  中国半导体论坛 振兴国产半导体产业!   点击链接:2022春季半导体线上招聘会开始啦!3月31日晚间,万业企业、长川科技两家公司公告称,国家集成电路产业投资基金股份有限公司(大基金)因自身经营管理
  • 新能源汽车,会让传统汽车会沦为汽车中的诺基亚吗? 来源:新智驾 作者:洁萍图片/特斯拉官网“随着新能源汽车的加速,中国燃油车市场竞争将更加激烈,2021年传统燃油车市场现存85个品牌,其中34个品牌月销量千台以下,有9个品牌消亡。”在3月底的一场汽车
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了