向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

普朗克常数重新定义“一公斤”原器标准

时间:2018-11-28 作者:Martin Rowe 阅读:
随着2018年11月16日新版国际单位制通过,新的公斤定义将改以物理学的普朗克常数(Planck constant)为标准,重新定义“公斤”(kilogram)的重量。百年来的“国际公斤原器”将走入历史…

 N5GEETC-电子工程专辑
世界上所有的测量结果都可以追溯到“国际单位制”(Système International d'Unités;SI Units)。国际单位制以七个基本单位为基础,并由此推导出各种可相互换算的测量单位。多年来,测量的定义——安培(ampere)、烛光(candela)、开尔文(kelvin)、公斤(kilogram)、米(meter)、摩尔(mole)以及秒(second)——都已经过重新定义,因而都是以自然发生的现象为为基础,例如普朗克常数(Planck’s Constant)等。基于实物定义的最后一个SI单位——公斤,最近终于也重新定义了。N5GEETC-电子工程专辑
N5GEETC-电子工程专辑
在此之前,所有的质量测量的标准源于存放在法国巴黎近郊国际度量衡局(International Bureau of Weights and Measures;BIPM)的单一物件——国际公斤原器(International Prototype of the Kilogram;IPK),自1884年被铸造成为公斤的标准以来一直存放在此。N5GEETC-电子工程专辑

SI_units_200x200.pngN5GEETC-电子工程专辑

以人造制品作为测量单元的世界标准存在两个根本问题。首先,它的值可能随时间发生改变。但是,由于它是世界标准,我们无从得知它是如何变化的,因为它就是标准。如果世界标准发生变化,那么以它为基础的所有测量值也会发生变化。N5GEETC-电子工程专辑

kibble_balance_1800x2363.jpgN5GEETC-电子工程专辑
基布尔天平使用电磁力测量质量N5GEETC-电子工程专辑
(来源:NIST)
N5GEETC-电子工程专辑

第二个问题是,你不可能在每次需要校准时,都把每个质量测量装置带到法国。因此,美国的国家标准暨技术研究院(NIST)和英国的国家物理实验室(NPL)等国家标准实验室都设有自己的公斤标准,并且会定期将这些标准带到法国与原器进行比较。然后再使用国家标准来比较其他标准,之后再用于与另一标准进行比较,或是将标准用于校准测量仪器。因此,您需要记录一连串与原器进行的比较与校准,以便确认质量测量的可信度。N5GEETC-电子工程专辑

随着2018年11月16日新版国际单位制的通过,新的公斤定义不必再与原器进行比较了。现在,国家实验室就能够建立自己的公斤标准,因为它虽然很难实现,但可以复制。计量学家需要拥有足够的设备并遵循严格的步骤来制造自己的公斤标准,但这还是比依赖单一人工制品好多了。随着新的定义出现,您无需再携带庞大的天平进行校准。如今,公斤不会改变了,而是根据其进行定义的方式而异。N5GEETC-电子工程专辑

从2019年5月开始,公斤的定义将是: 当以单位J s表示时,普朗克常数h的固定值为6.626 070 15×10-34,即等于kgm²s-1,与米和秒的关联以c和Δv进行定义。N5GEETC-电子工程专辑

实现公斤的过程取决于一个称为“基布尔天平”(Kibble balance)的工具。它使用了线圈和磁铁,线圈中的电流施加已知的力,并且可以测量到足够精确的电流。因为电流的定义已经根据磁场力确定,所以它可以用于导出向上的力,用于比较未知物体的质量。当力相等时,可以测量未知物体的质量。电压和电流的测量基于普朗克常数。有关基布尔天平如何运作的详细说明,请参阅NIST的Kilogram: The Kibble BalanceN5GEETC-电子工程专辑

由于基布尔天平已经存于于国家计量实验室,如今全球都可以重建自己的公斤原器标准了。N5GEETC-电子工程专辑

编译:Susan Hong, EET TaiwanN5GEETC-电子工程专辑

qrcode_EETCwechat_120.jpgN5GEETC-电子工程专辑

关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”N5GEETC-电子工程专辑

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Martin Rowe
"EE Times/EDN资深测试与量测技术编辑。Martin Rowe在《测试和测量世界》担任技术编辑和高级技术编辑达20年,其中包括担任EDN Design Ideas编辑三年。在此期间,Martin的报道涵盖了大部分的技术和公司,包括台式仪器,如示波器、仪表、信号​​源及其应用。他最喜欢这些仪器的应用包括高速信号测量、基本测量(电压/电流/功率)、校准和EMC/EMI/RFI。所有这些都直接适用于连接器和连接性能。从2004年到2012年,为了了解工程师是如何进行测试的,Martin访问了多家公司,包括Bose,DeWalt和Tyco Electronics(现为TE Con​​nectivity)。 让Martin出名的还有他的音乐——他写了六首描述工程师生活的歌曲。这一切始于2006年的“测量蓝调(Measurement Blue)”,证明了任何事情都能用蓝调写出来,连接器都成了Martin的歌。 “Below a GigaHertz”这首歌向那些还工作在1GHz以下信号的工程师致敬,他们是古老历史的见证者。 Martin曾在IEEE EMC Symposia上现场演出了“The Measurement Blues”和“The Lab in the corner”。 Martin拥有伍斯特理工学院的电子工程学士学位和宾利学院的MBA学位。"
您可能感兴趣的文章
  • 谁仍在惧怕难搞的电容负载变化?斩波放大器? 零点漂移和斩波放大器具有复杂的输出阻抗,因此在输出端出现电容负载时很难稳定。我将展示如何使用带双反馈的Riso来补偿斩波稳定运算放大器的电容负载。
  • 5G毫米波空口测试挑战与解决方法 Sub-6GHz频段可以沿用4G时期的一些技术,与之相关的射频器件产业链也相对成熟,但由于该频段资源有限,业界将目光投向了资源相对丰富的毫米波频段。毫米波频段的优势是具备大量的可用频谱带宽、波束窄、方向性好等,但这也将给未来5G终端及基站的测试带来诸多挑战。本文将从测试角度探讨毫米波芯片带来的挑战及解决方法。
  • 华为5款手机被移出GeekBench跑分榜单 日前,国外知名跑分平台Geekbench更新排名名单,同时也公布了最新黑名单,有六款设备因人工干预上榜,五款华为,一款一加。型号分别的华为Mate 10 Pro、华为P20 Pro、华为Mate 10、华为P20、华为荣耀Play、一加手机5……
  • 芯片设计如何跑赢汽车电子系统的安全性和可靠性竞赛? 无论是此前自动驾驶汽车失控导致车毁人亡,还是近段时间发生的多起高端新能源汽车因为电池/电路原因导致自燃的事件,都不禁让人感叹,这些电子技术制成的创新汽车产品,什么时候才能让人开起来更安心,停在车库里更放心呢?在笔者看来,新时代的汽车电子如果要实现安全性和可靠性,主要有以下四个障碍需要跨越。
  • LitePoint 5G实验室近日台北正式落成 LitePoint 5G实验室配合已经推出的单机测试系统 IQgig-5G, 大量简化设定与校准时间,帮助客户快速解决问题。
  • 从电源管理到无线兼容,解决物联网测试面临的五大挑战 在未来几年,AI、5G、IoT和工业自动化(IIoT)的进步将加快行业变革和创新的步伐。跨行业的各种物联网传感器将用于自动数据传输和远程设备控制。在万物互联的时代,连接将变得司空见惯,到2020年,Gartner预计将有超过200亿台物联网设备投入使用。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告