广告

人工智能仍然存在信任问题

时间:2018-12-28 作者:Gary Hilson 阅读:
预计在2019年我们将会看到更多致力于为人工智能消除偏见并使决策更加透明的工作进展…
广告

过去一年来,业界已经完成许多任务,大幅提高了人工智能(AI)的理解力、准确性和可扩展性,预计在2019年我们将会看到更多致力于为AI消除偏见并使决策更加透明的工作进展。

IBM Research副总裁Jeff Welser表示,过去一年来,业界已经在AI方面达到几项发展里程碑了,预计在2019年将持续关注于三大关键领域。他说,对于企业而言,将以AI驱动的认知解决方案带入可使其轻松导入的平台,不只是一项策略性业务需求,同时也增加了AI的理解,以及解决偏见和信任等问题。

在推动AI的进展方面,Welser表示业界已在几个方面取得进展,包括理解语音和分析影像。例如,IBM的Project Debater计划已能将目前的AI语音理解能力扩展到回答简单问题的任务之外,让机器更能理解人们可能何时提出争论,并使其超越仅限于“搜寻类固醇”(search on steroids)这一类的简单任务。例如,提出一个没有固定答案的问题——政府是否应该提高对于远距医疗的投资。

Welser说,如同让AI更能理解所说的内容一样至关重要的是,它在更快、更准确地辨识所看到的内容方面也取得了长足进展。IBM的作法并非要求提供数千或甚至数百万幅标记影像来训练视觉辨识模型,而是证实AI现在甚至可以只用一个例子作为辨识新对象的指导原则,这让AI得以扩展。
IBM Research的AI导入来自Project Debater计划为辨论内容打造的机器学习听力理解功能;图右是专业人类辩论家Dan Zafrir
IBM Research的AI导入来自Project Debater计划为辨论内容打造的机器学习听力理解功能;图右是专业人类辩论家Dan Zafrir(来源:IBM Research)

Welser说,让AI学习变得可扩展的另一种方式是让AI代理之间相互学习。IBM研究人员开发了一种架构和算法,让AI代理之间得以交换知识,从而比以前的方法学得更快。此外,他说,他们还可以学会调整现有方法失败之处。

“如果你面对更复杂的任务,其实并不必一定要训练一个大型系统,”Welser说,“但你可以采用个别系统并将它们结合起来共同完成任务。”

降低深度学习模型的复杂度

在降低深度学习模型所需的运算资源方面也正取得进展。2015年,IBM介绍如何使用16位精度训练深度学习模型,而今,该公司强调 8位精度也不至于折衷各种主要AI数据集类别(包括影像、语音和文本)的模型准确度。AI的调整也可以透过新的神经网络架构搜寻技术来实现,从而减少设计网络所需的繁重工作。

这些进展都建立在AI必须值得信赖的事实基础上,Welser表示,明年将会有很多工作都关注在这一点。就像其他技术一样,AI可能会受到恶意控制,因此它必须能够预测对抗性攻击。

现在,AI可能很容易受到所谓“对抗示例”(adversarial examples)的影响,黑客可能会在你不知不觉时改变影像,欺骗深度学习模型,而将其分类为攻击者所需的各种类别。IBM Research的解决办法是采用一种不依赖于特定攻击(attack-agnostic)的措施,以评估神经网络的稳健性,并指导系统如何检测和防御攻击。

另一个难题是神经网络往往是黑盒子——关于他们如何做出决定并非显而易见的,Welser说。缺乏透明度是对于AI信任的一项障碍。同时,消除偏见也很重要,因为AI越来越依赖于决策,他说,但这相当具有挑战性。

Wesler说:“截至目前为止,我们已经看到大多数人都非常兴奋地展开AI系统设计,使其能够实现某些任务。然后他们会试着搞清楚所设计的AI系统是否存有偏见或者是否安全稳健,或者他们所做的决定是否有问题。”

编译:Susan Hong,EET Taiwan

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Gary Hilson
EE Times特约编辑。Gary Hilson是一位自由撰稿人和编辑,曾为北美地区的印刷和电子出版物撰写过大量稿件。 他感兴趣的领域包括软件、企业级和网络技术、基础研究和教育市场,以及可持续交通系统和社会新闻。 他的文章发表于Network Computing,InformationWeek,Computing Canada,Computer Dealer News,Toronto Business Times,Strategy Magazine和Ottawa Citizen。
  • 系统级芯片(SoC)的复杂设计选择:EDA和IP 在做系统级芯片(SoC)的设计规划时,需要考虑哪些主要因素?目前主流的SoC一般包括哪些功能模块或IP?有什么新的技术趋势值得关注?为SoC选择IP时主要基于什么标准或要求?如何实现差异化设计?当前SoC在设计验证方面遇到哪些挑战?有什么应对解决方案?AI在复杂的高性能SoC设计中能够发挥什么作用?未来设计趋势如何?
  • 系统级芯片(SoC)的复杂设计选择:片上网络(NoC) 什么是片上网络(NoC)?为什么系统级芯片(SoC)设计需要NoC?片上网络(NoC)相比传统的总线接口通信有什么优点和缺点?高性能的SoC设计在性能、功耗和尺寸方面面临哪些挑战? 5G、AI和自动驾驶等新兴应用对SoC设计提出了什么特别要求?
  • 2021年全球半导体行业10大技术趋势 2020年全球新冠疫情的蔓延和中美在半导体领域的冷战升级虽然对全球经济和半导体产业造成了负面影响,但半导体领域的技术进步却没有止步,有些技术甚至加快了市场商用化进程。ASPENCORE全球分析师团队精心挑选出2021年全球半导体行业将出现或凸显的10大技术趋势。对比2020年10大技术趋势,2021年有哪些变化呢?
  • 智连大湾区,TE能提供哪些“智”与“连”的技术及服务? 今年是谋划“十四五”规划的关键之年,同时也正值深圳经济特区成立40周年,中国为应对国际形势的压力和全球疫情带来的影响,“新基建”的概念开始提出及其涉及范围逐步明确。在如此背景下,粤港澳大湾区(以下简称“大湾区”)作为我国开放程度最高、经济活力最强的市场之一,人工智能、大数据中心、5G基建等新项目在大湾区各大城市集群落地、全面开花。数字新基建已成为大湾区建设的新引擎。
  • 系统级芯片(SoC)的复杂设计选择:RISC-V处理器内核 在做系统级芯片(SoC)的设计规划时,需要考虑哪些主要因素?目前主流的SoC一般包括哪些功能模块或IP?有什么新的技术趋势值得关注?RISC-V与FPGA如何有机结合助力SoC设计?当前的SoC设计在性能、功耗和尺寸方面面临哪些挑战?有何解决方案?物联网和边缘计算等嵌入式系统对SoC设计提出了什么特别要求?
  • CMOS传感器在3D视觉、感测和度量中的应用 工厂已进入自动化工作,以提高产能和在产品查验和库存的方方面面节省时间和金钱。要优化这些因素,拥有视觉系统的机器需要更高速和以更佳性能工作。因应这些发展,2D视觉遇上了限制,使得3D视觉被广泛引进,以实施更高精度的质量检验,反向工程或物件量度任务。三角测量技术正在这些应用中获大量使用,鉴于三轴图像要求高分辨率,需要非常高速的的传感器。
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了