广告

轻松把单线圈继电器转为双线圈应用

时间:2019-02-20 作者:KC Yang 阅读:
继电器(relay)是电路中常见的机电组件,有两种类型:闩锁(latched)或非闩锁(non-latched);闩锁继电器即使在完全断电后仍会保持其最后的开关位置,无论单线圈还是双线圈类型都可以。
EETC https://www.eet-china.com

继电器(relay)是电路中常见的机电组件,有两种类型:闩锁(latched)或非闩锁(non-latched);闩锁继电器即使在完全断电后仍会保持其最后的开关位置,无论单线圈还是双线圈类型都可以。71BEETC-电子工程专辑

单线圈闩锁继电器仅使用一个线圈来设置或复位开关位置,但需要正负电压。当施加正电压时,电流沿一个方向流动并让继电器进入设定状态(即继电器开关闭合)。若施加负电压,则反转电流方向,使继电器进入重设(reset)模式(即开关打开)。71BEETC-电子工程专辑

而双线圈闩锁继电器仅使用正电压,但需要两个电源或驱动器。这种继电器有一个设定线圈和一个重设线圈,当设定线圈通电时,继电器进入设定状态;相反,当重设线圈通电时,继电器进入重设模式。但两个线圈永远不会同时通电。71BEETC-电子工程专辑

如果你想使用双线圈继电器,但手头可用的唯一驱动器是用于单线圈继电器的,有一个办法可以轻松地将单线圈驱动器转换为可以驱动双线圈继电器,如图1 (文章上方大图)所示。这种只有正向电压驱动的转换对于继电器测试特别有用,因为它只需要一个电压极性而不是两个。这种办法可以大大简化继电器的测试设置。71BEETC-电子工程专辑

jidianqi1.png71BEETC-电子工程专辑

图1:二极管将单圈继电器驱动转换为双圈使用。71BEETC-电子工程专辑

运作的原理很简单。当线圈驱动器输出电压为正时,电流流过二极管D1以激发设定线圈,而重设线圈不供电,因为D2阻断电流。继电器进入设定状态。当电压为负时,二极管D1阻断流过设定线圈的电流,二极管D2开始激发重设线圈。71BEETC-电子工程专辑

图1中的闩锁继电器有两个独立的线圈连结,使用4支接脚。然而,有些双线圈继电器只使用三支接脚,还有一个公共的线圈连结,如图2所示。这时候配置稍微复杂一些,涉及四个二极管。71BEETC-电子工程专辑

如前所述,当驱动器电压为正时,电流流过二极管D2、设定线圈和D3。二极管D1和D4反向偏置,阻止电流到重设线圈。类似地,当电压为负时,电流流过二极管D4、重设线圈和D1,同时设定线圈断电。同样,一次只能给一个线圈通电。71BEETC-电子工程专辑

jidianqi.png71BEETC-电子工程专辑
71BEETC-电子工程专辑
图2:当线圈共享一个连结时,需要4个二极管来转换单线圈信号以提供双线圈应用。71BEETC-电子工程专辑

转换电路的另一个好处是可以比较容易测试双线圈继电器的AC性能,例如操作时间(开启时间)、反弹时间、断开时间和最大频率等,只需用方波电压信号产生器替换继电器驱动器即可。由于许多继电器线圈需要高电压(高达48V),在某些情况下还需要从20mA到1000mA以上的大电流,只有信号产生器可能是不够的。在这种情况下,就需要一个高压信号产生器放大器,比如美商Accel Instruments的TS250,以提升电压和电流(见图3)。71BEETC-电子工程专辑

jidianqi2.png71BEETC-电子工程专辑
图3:仅使用一个信号产生器和一个高压驱动器来测试双线圈继电器。71BEETC-电子工程专辑

二极管电路可以提供一种简便方法,将单线圈继电器驱动信号转换为双线圈使用;这种方法可让系统设计人员选择使用单线圈或双线圈闩锁继电器,而无需更换驱动器。此外,它只需一个信号驱动器即可实现双线圈闩锁继电器的测试。71BEETC-电子工程专辑

EETC https://www.eet-china.com
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
  • 相控阵技术是如何简化天线设计的? 为提高性能,无线通信和雷达系统对天线架构的需求不断增长。只有那些功耗低于传统机械操纵碟形天线的天线才能实现许多新的应用。除了这些要求以外,还需要针对新的威胁或新的用户快速重新定位,传输多个数据流,并以超低的成本,延长工作寿命。有些应用需要抵消输入阻塞信号的作用,降低拦截概率。正在席卷整个行业的相控天线设计为这些挑战提供了解决办法。
  • 深度解析Portable Stimulus:UVM集成 PSS和UVM的集成在一起不同于将两种语言进行集成。本文将列出这种集成的基本策略,以尽可能通用的语言来描述集成的六个步骤以及本文会详细介绍前三个步骤。
  • 通过辐射发射测试:无需复杂EMI抑制技术的紧凑隔离设计 据报道,50%的产品首次EMC测试都以失败告终。这可能是因为缺乏相关知识,且未能在产品设计阶段的早期应用EMC设计技术。如果在功能设计完成之前一直忽略EMC问题,通常会带来耗费时间且代价高昂的挑战。想要最大限度地缩短设计时间和降低项目成本,在项目开始时就进行EMC设计是至关重要的。组件的选择和放置也很重要。
  • 通过实时网络实现多轴运动控制的同步 实时确定性以太网协议(例如EtherCAT)已经能够支持多轴运动控制系统的同步运行。1 该同步包含两方面含义。首先,各个控制节点之间的命令和指令的传递必须与一个公共时钟同步;其次,控制算法和反馈函数的执行必须与同一个时钟同步。第一种同步很好理解,它是网络控制器的固有部分。然而,第二种同步到目前为止一直为人所忽视,如今成为运动控制性能的瓶颈。
  • 什么是隔离数字输入? 虽然隔离数字输入和数字隔离器听起来很相似,但实际上它们之间存在一些显著差异。阅读本博文后,希望您能够轻松分辨出两个隔离功能之间的区别。
  • 为电动汽车选择合适的额定功率电阻 绕线电阻额定功率通常为持续功率,不足以支持电动汽车应用。典型应用是大电容预充电和放电,通常称为 “软启动”。这种情况下,电阻的脉冲处理能力也非常重要。结合理论基础与热性能有限元模拟,可以确定较长脉冲持续时间内的这种能力。所得具体结果便于快速评估不断变化的客户规格,提供合适的电阻。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告