广告

模拟信号处理才是AI的未来?

时间:2019-04-22 作者:Nitin Dahad 阅读:
Frantz表示,随着组件尺寸缩小,他对于SiP技术发展的终极目标,是催生能自行产生或创造能量、具备传感器基础,以及拥有控制、计算机、无线通信的单一封装,并且没有接脚。
EETC https://www.eet-china.com

早在1970年代,Gene Frantz 就预见数字信号处理(DSP)的发展趋势;但现在他认为,我们需要将注意力转回模拟技术,以因应人工智能(AI)带来的艰巨挑战。9E7EETC-电子工程专辑

Frantz之前是德州仪器(TI)的首席技术院士(编按:他也被业界誉为“DSP之父”),现在则是美国莱斯大学(Rice University)教授,同时也是一家美国新创公司Octavo Systems的共同创办人暨技术长;该公司总部位于德州奥斯汀(Austin, Texas),专长系统级封装(SiP)技术。9E7EETC-电子工程专辑

在Octavo的首款SiP产品OSD32MP1──采用意法半导体(STMicroelectronics)的STOSD32MP1 微处理器──发表会上,Frantz接受EE Times采访时表示,他相信SiP和模拟处理将是未来趋势。他提到,发展AI 需要更好的解决方案,并建议我们应该考虑回归模拟信号处理。9E7EETC-电子工程专辑

“当大多数人听到『模拟信号处理』,可能会想到模拟运算,但这并不是我真正想说的; ”Frantz指出:“如果我能利用信号处理做一个模拟算数逻辑单元(analog arithmetic logic unit,ALU)或混合信号ALU,就可以让性能提升好几个等级,同时将功耗降低数个等级。而我唯一会有的重要问题是动态范围(dynamic range)、准确性和线性。如果我能让你的性能提升三或四个等级,同时把功耗降低三到四个等级,你认为这三个问题能解决吗?”9E7EETC-电子工程专辑

Frantz用初中生第一次学跳社交舞来比喻:男孩与女孩分两边各站一排,但没有人愿意走到中间来跳舞。“我看到的是,所有了解信号处理理论的人还有处理系统架构师都站在墙边,没有人走到舞池中;他表示:但这两方需要能结合…就像初中生的舞会,很多活动其实是在走廊上进行,而非跳舞厅。”9E7EETC-电子工程专辑

Frantz在Embedded World大会的Octavo摊位上。9E7EETC-电子工程专辑

9E7EETC-电子工程专辑

(摄影:Nitin Dahad,EE Times)9E7EETC-电子工程专辑

Frantz认为,SiP正在开始改变这种情况:“现在我可以做我想做的事情,因为我无法以相同制程让模拟信号处理表现与数字信号处理表现一样好,但我还是可以把它们放在一起,这就是我们用SiP做的事情。”9E7EETC-电子工程专辑

终极SiP是无接脚?

Frantz表示,随着组件尺寸缩小,他对于SiP技术发展的终极目标,是催生能自行产生或创造能量、具备传感器基础,以及拥有控制、计算机、无线通信的单一封装,并且没有接脚。9E7EETC-电子工程专辑

他表示几年前与Masood Murtaza──在TI与Frantz一起领导封装技术研发──开始谈论摩尔定律(Moore's Law)以及它如何推动了硅制程的成功;那么,“SiP的成功定律是什么?”Frantz表示:“答案是让接脚数越来越少;我们觉得终极SiP组件应该没有接脚。”9E7EETC-电子工程专辑

Frantz说,他的梦想是能用SiP组件来贴墙壁,然后任何人都能遥控改变墙壁的颜色:“我想这么做的原因是,如果你能透过一种特殊形象传达一个概念,即使人们可能会嘲笑它,他们也会因此理解你的概念。”9E7EETC-电子工程专辑

这对Frantz来说并不是一个新点子,他表示美国加州大学柏克莱分校(University of California-Berkeley)大约在20年前就提出了“智慧微尘”(smart dust)的想法:“所有我正在做的事情说明了一点,随着科技演进,我们越来越有能力真正实现它。”9E7EETC-电子工程专辑

“想想看,如果我能实现这种组件然后透过RF将它们互连,我不但能创造单一色彩,也能产生不同的色彩,甚至能利用它们进行艺术创作;” Frantz表示:“我职业生涯中的大部分时间都在研究那些被认为是不可能的事情。”9E7EETC-电子工程专辑

Frantz认为未来十年,有一半的半导体市场会是由 SiP技术驱动,以因应终端节点对更高智慧的需求:“我们采取的理念是,SoC并非真的是芯片上系统,而是芯片上子系统(sub-system),而且它一定会被纳入一个更大的系统。”9E7EETC-电子工程专辑

Octavo的OSD32MP1 SiP产品采用ST的OSD32MP1微处理器,可搭配以TI的AM335X处理器为基础之Octavo模块系列。9E7EETC-电子工程专辑

201904222.png9E7EETC-电子工程专辑

(摄影:Nitin Dahad,EE Times)9E7EETC-电子工程专辑

“我们正让半导体制程能接受量越来越少的产品,这是系统整合所需要的。如果我制作晶体管,我可以做数千亿个、让每个人都使用,但如果我做的是一个专有系统,使用的人并不多。当我们朝着这个方向发展,你会发现我唯一能在系统层级进行整合的方法,就是利用类似SiP的东西,而且数量会更低,这将成为市场主流。”9E7EETC-电子工程专辑

Frantz 补充,一旦组件的性能、功耗与尺寸间的关系被充分了解,整个AI与深度学习领域的问题也能被妥善解决,届时人们就能在智能型手机上享受到如同今日云端运算那种等级的实时运算性能。9E7EETC-电子工程专辑

他表示,SiP技术也能扮演延长摩尔定律寿命的角色,至少在某种程度上:“当你从系统单芯片转向SiP,你就是把更多的晶体管放在同一片基板上;因此事实上我们还是能继续达成摩尔定律目标,只是创新技术从硅制程转向封装制程。”9E7EETC-电子工程专辑

在未来,能在推动更高运算能力的方法将成为显学,包括异质整合(heterogeneous integration)技术;半导体封装是其中一种方法,而Frantz的想法是另一种:以RF互连的一个SiP组件数组来打造一面墙,然后透过编程来随心所欲地进行艺术创作。9E7EETC-电子工程专辑

本文英文来源:Is Analog Signal Processing the Future of AI?   EETimes US  责编:Judith Cheng9E7EETC-电子工程专辑

 9E7EETC-电子工程专辑

EETC https://www.eet-china.com
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Nitin Dahad
EE Times欧洲记者。Nitin Dahad是EE Times的欧洲记者。
您可能感兴趣的文章
  • 深度学习的兴起,是通用计算的挽歌? 早期的计算机鲜有真正“通用”的设计,它们基本上都是为某一类算法特制的,我们不能简单将其说是像ASIC或FPGA。即便在真空管转向半导体以后,针对新功能进行硬件重新设计也是必须的。后来才有基于冯诺依曼体系的计算机架构,即可以存储指令,在软件中执行算法才成为可能。这是“专门硬件”向通用硬件的华丽转身。
  • 行AI之术,察腠理之疾 《扁鹊见蔡桓公》相信大家小时候都背过,蔡桓公讳疾忌医,最后导致病入骨髓、体痛致死。时至今日,人们虽然不再讳疾忌医,但医疗资源紧缺让大家只能把大量时间耗费在大医院排队中。在疾病之初,症状初显甚至未显之时,能否在家中通过自查发现呢?不是每家都可以有神医扁鹊,但未来AI和先进半导体技术的加持下,每家都可以有精准而方便的家用医疗器械……
  • Graphcore如何能成为西方半导体业唯一“独角兽”? 总部位于英国布里斯托的新创公司Graphcore,开发了一款被称为智能处理单元的新型AI加速器;Graphcore估计市值达17亿美元,被认为是西方半导体产业界唯一的“独角兽”,其投资者包括Dell、Bosch、BMW、Microsoft和Samsung等巨擘。
  • 机器也有偏见,AI算法仍须“留校察看” AI决策的公正与否,在很大程度上取决于人工智能训练算法所使用之测试数据集的准确性和完整性,而且取决于算法本身的准确性,以及如何做出“成功”的决定。训练算法的优化策略如果是为了实现整个群体的最大整体精度,实际上会放大偏见(bias)。
  • 六大技术支柱, 英特尔开启多元化计算时代的一把秘钥 只用了不到半年的时间,Agilex FPGA就成为“六大技术支柱”落地的最佳载体,英特尔强大的系统研发和整合能力可见一斑。
  • 青城山下问医道:AI医疗“硬”创新之难,堪比修仙? 说到青城山下,你可能说着说着就唱出来了。这是中国民间传说《白蛇传》中白素贞修仙的地方,“洞中千年修此身”后,白娘子就来到了苏杭地区,与她做大夫的相公许仙一起开药铺,悬壶济世。看来青城山除了是道教名山,还和医道有着渊源,近日在青城山脚下举办的第三届 “青城山中国IC生态高峰论坛”,就以智慧医疗电子为主题,聚集了生态链各个环节的厂商、机构代表和精英人士……
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告