广告

RDIMM或LRDIMM适合你的设计吗?

时间:2019-05-09 作者:Doug Daniels 阅读:
下一代DDR5缓冲芯片呼之欲出,服务器和系统设计人员将很快将DDR5服务器双列直插存储器模块(DIMM)缓冲芯片组纳入其新设计中。但服务器/系统设计师可能在思考的问题是:在带寄存器的DIMM(RDIMM)或减负(load-reduced)DIMM(LRDIMM)间如何取舍?了解RDIMM和LRDIMM之间基本差异非常重要,因为这些差异如何有助于指导你正确使用DIMM进行设计。某些规范对于帮助你确定要使用的DIMM也至关重要。最后,了解一些关键设计注意事项是有帮助的,它们可作为选择正确DIMM类型的基础。
广告

DDR5 DIMM缓冲芯片正为下一代服务器/系统设计整装待发。你可以选择RDIMM或LRDIMM,但练达的设计师知道要同时保有这两者。1KaEETC-电子工程专辑

下一代DDR5缓冲芯片呼之欲出,服务器和系统设计人员将很快将DDR5服务器双列直插存储器模块(DIMM)缓冲芯片组纳入他们的新设计中。但服务器/系统设计师可能在思考的问题是:在带寄存器的DIMM(RDIMM)或减少负载的(load-reduced)DIMM(LRDIMM)间如何取舍?1KaEETC-电子工程专辑

简要的回答是:如果你致力高速和低延迟,那么RDIMM通常适合你。另一方面,当你的设计需要更高的内存密度时,LRDIMM是不二之选。但要使设计高效、没有短板,还有很多事情需要考虑。1KaEETC-电子工程专辑

服务器/系统设计达人明白:通盘考虑两者是明智之举。为什么?因为你的系统内存容量可能会随时间而变化。最初,你的系统可能没有满载,因此你可以从RDIMM开始,在相对轻载的条件下达到最高速度。但以后,你可能希望增加服务器的内存容量,因此可以使用LRDIMM以提供更大容量。1KaEETC-电子工程专辑

这就是为何了解RDIMM和LRDIMM之间基本差异非常重要,并了解这些差异如何有助于指导你正确使用DIMM进行设计。某些规范对于帮助你确定要使用的DIMM也至关重要。最后,了解一些关键设计注意事项是有帮助的,它们可作为选择正确DIMM类型的基础。1KaEETC-电子工程专辑

RDIMM或LRDIMM——选哪种?

如图1所示,RDIMM上有一个带寄存器的时钟驱动器(RCD)。 RCD从主机存储器控制器获取命令地址总线、控制信号和时钟信号,然后将这些信号流扇出到DIMM上的DRAM。1KaEETC-电子工程专辑

1904-1.gif1KaEETC-电子工程专辑
图1:带有RCD的RDIMM(来源:Rambus)1KaEETC-电子工程专辑

DQ信号数据总线和DQ选通(DQS)直接从存储器控制器传送到DRAM封装。在RCD上缓冲的唯一操作是命令/地址总线、控制信号和DIMM的输入时钟。所有这些都在通过RCD后都会进入RDIMM上的所有DRAM,并重新计时和清理。1KaEETC-电子工程专辑

与早期的无缓冲DIMM(UDIMM)设计相比,采用RDIMM的设计可跑得更快。与UDIMM相比,将RCD放在RDIMM中可以帮助你加大负载,因为它可以缓冲时钟信号和命令/地址线。在RDIMM中,时钟信号和命令/地址线需要额外的驱动强度,因为它们会进入DIMM上的所有DRAM封装。相比之下,DQ和DQS信号不需要额外的驱动强度,因为它们直接从存储器控制器进入单个DRAM封装或多列DRAM封装。1KaEETC-电子工程专辑

此外,就RDIMM来说,了解从存储器控制器到DIMM的RCD的命令/地址总线和输入时钟是单向的很重要。相比之下,DQ总线和DQS在存储器控制器和RDIMM上的DRAM之间则是双向的。1KaEETC-电子工程专辑

接着看LRDIMM,如图2所示,它上面也有一个RCD,并使用多个数据缓冲区(DB)来缓冲主机内存控制器和DRAM之间的进入DQ和DQS信号。DDR5 LRDIMM有10个DBs,每个DB只处理8位数据总线。1KaEETC-电子工程专辑

1904-2.gif1KaEETC-电子工程专辑
图2:LRDIMM有单个RCD并使用多个数据缓冲器来缓冲存储器控制器和DRAM之间的进入DQ和DQS信号。 (来源:Rambus)1KaEETC-电子工程专辑

对于DDR5,数据总线预计是两个32位通道加上一个8位纠错码(ECC)字节。因此,每个通道上有40位,LRDIMM的每一侧需要5个DBs。1KaEETC-电子工程专辑

DB和DRAM之间的信号称为MDQ和MDQS,以区别主机端的DQ和DQS信号。这里,主机和DRAM间数据缓冲区的好处是:如果LRDIMM上有多列DRAM,你还降低了数据总线上的负载。1KaEETC-电子工程专辑

此外,数据缓冲区获得8个数据位,但每半个字节有4个DQ位。对于四个位中的每一个,都有一个DQS选通位,它是差分的,而DQ位是单端的。主机存储器控制器可通过带内(in-band)命令/地址总线或通过串行管理总线对RCD进行配置。主机内存控制器不直接配置数据缓冲区,而是由RCD通过缓冲通信总线(BCOM)配置。1KaEETC-电子工程专辑

驾驭规范

在规划DDR5设计时,DIMM规格将发挥重要作用。它们很重要,因为它们是量测缓冲芯片、时钟和/或缓冲数据信号质量的标准。你希望能够确保DRAM的输入在经过RCD或DB缓冲后没太多变化。1KaEETC-电子工程专辑

你还希望确认系统存储器通道时序的预算得以保证。另外,你想知道DB或RCD不会占用从内存控制器到DIMM并返回内存控制器这一往返延迟的太大部分。1KaEETC-电子工程专辑

就规格本身而言,RDIMM和LRDIMM的一些高阶规格是相似的。例如,速率以存储器通道上的每秒兆次传输(MT/s)来度量。对于DDR5,速率从3,200 MT/s开始、最高可达6,400 MT /s,可能更高。1KaEETC-电子工程专辑

此外,与DDR4一样,DIMM的内存容量以千兆字节为单位,例如8 GB,16 GB或32 GB。了解功耗也很重要。采用非常结构化的方式测量功耗,具有标准定义的工作和休眠功耗模式。对于数据缓冲区,它区分工作状态下的读、写功耗。1KaEETC-电子工程专辑

RDIMM上RCD的关键规范与时钟计时有关,因为RCD的主要功能是重新缓冲时钟并将其发送到DRAM。在这里,你需要了解从DIMM输入时钟到RCD输出命令/地址(CA)信号的传播延迟。该规范称为tPDM,包括发出信号的时间,而不仅仅是时钟延迟。1KaEETC-电子工程专辑

静态偏移(或tSTAOFF)是另一种传播延迟测量,它指的是通过RCD、从输入到输出时钟的时钟延迟。因为这是个缓冲时钟,所以你还需知道输出到DRAM的时钟的抖动量。1KaEETC-电子工程专辑

动态偏移(或tDYNOFF)是传播延迟的最大变化,是衡量时钟一致性的指标。这对DRAM时序很重要。 tQSK是另一种RCD测量,它是从QCA输出到时钟的偏差(skew)。1KaEETC-电子工程专辑

对于LRDIMM,以下是数据缓冲区的关键规范。一些重要的测量和规范还与偏差有关;但它们是从DQS或选通到DQ数据(称为tDQSQ)、或每半个字节的引脚之间DQS到DQ的偏差。1KaEETC-电子工程专辑

你还需要测量数据有效窗口(或tDVWp)。这决定了数据有效窗口可能的宽度,以便数据缓冲区有效处理。对于写入输入,有tDVA和tDVB规范,分别表示:数据有效前;数据有效后。它们告诉你可用于设置和保持数据缓冲区输出到DRAM的时间。1KaEETC-电子工程专辑

tPDM Read和tPDM Write是通过数据缓冲区的传播延迟的度量。这是针对DQ路径的,因为它是双向的,所以它们在每个方向上都是单独测量的。从主机存储器控制器的角度看:tPDM Read是从DRAM到主机的度量;tPDM Write是从主机到DRAM的度量。1KaEETC-电子工程专辑

接收器灵敏度是需要了解的LRDIMM数据缓冲区的另一个规范。对于DDR5,信号运行的速度比以前DDR信号要快得多。因此,你需要获得良好的测量结果,包括Vih/Vil(电压输入高电平和低电平)。1KaEETC-电子工程专辑

设计注意事项

在RDIMM或LRDIMM之间进行选择时,DDR5 MT/s的目标速率是主要考量之一。与LRDIMM相比,RDIMM更便宜、功耗更低。如果系统内存容量不是关键要素,它们还可以实现最高速度。1KaEETC-电子工程专辑

LRDIMM提供更高的DRAM内存容量。因为数据位在数据缓冲区内缓冲,它们或许能支持更多的封装列。如果你需要最大化服务器中每个CPU的可用内存,LRDIMM实际上是容量大咖。当然要有代价,因为你要向LRDIMM添加10个数据缓冲区。 DIMM设计稍微复杂些。因此,与RDIMM相比,LRDIMM的成本更高,且由于额外的数据缓冲器其功耗也稍高。1KaEETC-电子工程专辑

摘要

如前所述,RDIMM和LRDIMM都是下一代DDR5设计的可行选择。到底选哪种,取决于你的初始设计目标。如果需要性能更强的服务器设计,随着新的速度和容量需求增加,选用DDR 5 LRDIMM,则系统仍可胜任。1KaEETC-电子工程专辑

本文同步刊登于电子工程专辑杂志5月刊1KaEETC-电子工程专辑

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 采用长鑫DRAM,国内首款中国芯的DDR4内存条发售 光威弈PRO DDR4内存条采用自主国产的长鑫DRAM颗粒,由深圳市嘉合劲威电子科技公司生产制造。嘉合劲威声称,光威弈Pro DDR4是中国首款采用自主国产芯片,性能和品质能够满足消费市场需求的国产内存条。它的出现填补了国内消费市场的空白, 标志着国产存储的成功崛起。
  • 三星发现非晶态氮化硼(a-BN),将加速下一代半导体材料问 三星高级技术学院(SAIT)的研究人员与蔚山国家科学技术学院(UNIST)、剑桥大学两家高校合作,发现了一种名为非晶态氮化硼(a-BN)的新材料。此项研究已发表在《自然》杂志上,研究团队相信该材料有望加速下一代半导体材料的问世。
  • NVMe取代SATA,Ultrastar DC SN840将如何发挥NVMe最大价 在面向数据中心的支撑协议中,NVMe协议是更适合SSD产品的。据行业分析公司IDC预测,服务于超大规模云客户、OEM厂商和终端用户的IT组织都将继续迁出传统的SATA和SAS接口。至2020年,NVMe有望占据企业级PCIe SSD总出货量的55%以上,并在2018~2023年间以38%的复合年增长率持续增长。毋庸置疑,闪存的未来属于兼具速度、效率、容量和经济高效的可扩展性的NVMe。
  • 2020年Silicon 100榜单出炉! 几乎每年EETimes都会公布一份上一年吸引我们注意的电子和半导体初创企业名单,2020年推出的是EETimes的第20个榜单,这一次我们做了个“大动作”……
  • 企业级SSD和HDD能如何助力数据中心及远程办公? 受新型冠状病毒肺炎疫情影响,我们产生了新常态的工作模式以及生活方式。据阿里旗下在线办公平台钉钉数据显示,全国上千万企业、近两亿人开启了“云办公”模式。不过尴尬的是,由于对在家办公人数预估不足,全国人民试水协同办公的第一天,就有不少软件集体“崩溃”。后疫情时代,在家办公需求依旧暴涨,云服务的上游硬件、基础设备该如何应对?
  • 美国对福建晋华总经理和二名工程师发出逮捕令 美国旧金山联邦地方法院在当地时间6月24日发出逮捕令,将包括福建晋华总经理陈正坤在内的三名人员被列入美国通缉名单,另外两名是从美光跳槽联电的工程师何建廷和王永明。有业内人士认为,这起案件的直接原因是联电和美光之间的知识产权纠纷,但福建晋华在本次事件中“遇人不淑”,给联电挡了枪……
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了