向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

检测并强化对非侵入式篡改的攻击

时间:2019-05-10 作者:德州仪器 阅读:
为硬化电源中的变压器防止磁篡改,一种选择是屏蔽变压器;但是,这只在一定程度上有效。第二种选择是选择足以应对预期的磁篡改攻击的具有完全磁免疫力或磁阻的变压器。对于不会吸收太多电流的系统,第三种选择是使用不带任何磁性元件的电容降电源。
ASPENCORE

为最大限度地提高效率,电力公司供应商必须尽量减少发电和客户分布之间的能量损失。这些损失的一部分包括非技术性损失,例如盗电造成的损失。一些最普遍的盗电方法包括篡改电表(e-meter),因为电表相对来说容易找到。7k1EETC-电子工程专辑

有多种方法可以篡改仪表。除侵入式篡改方法外,还可在不打开仪表外壳的情况下非侵入式地篡改电子仪表。7k1EETC-电子工程专辑

磁性篡改是非侵入式篡改的最常见形式之一。在仪表附近放置强磁铁,强磁铁可能会使附近的变压器饱和,从而导致它们瘫痪。具体而言,强磁铁可能使电源中的变压器或电流互感器的电流传感器瘫痪,这可能导致用电用户的电费低于他们实际应该交纳的电费。7k1EETC-电子工程专辑

为应对磁篡改,对策包括尝试使用霍尔效应传感器检测磁场的存在,以及使仪表硬化以防止磁性篡改攻击。为检测磁篡改,三个霍尔效应传感器可检测所有三个维度中强磁铁的存在。当系统备用电源用完时,霍尔效应传感器的平均电流消耗很低至关重要。霍尔效应传感器可通过外部工作循环实现低平均电流消耗,或选择集成此工作循环的霍尔效应传感器。7k1EETC-电子工程专辑

为硬化电源中的变压器防止磁篡改,一种选择是屏蔽变压器;但是,这只在一定程度上有效。第二种选择是选择足以应对预期的磁篡改攻击的具有完全磁免疫力或磁阻的变压器。对于不会吸收太多电流的系统,第三种选择是使用不带任何磁性元件的电容降电源。7k1EETC-电子工程专辑

与电源中的变压器类似,为硬化电流互感器以防止磁篡改,可选择屏蔽电流互感器。但是,这只在某种程度上有效。获得磁免疫电流传感的最佳方法是使用分流传感器代替电流互感器。将分流器用于单相仪表相对简单:只需相对于分流器参考系统。对于多相电表,将分流器用作传感器更复杂。由于分流器没有固有的隔离,必须进行外部隔离,以防止连接到分流器的器件上出现大的、破坏性的差分电压。7k1EETC-电子工程专辑

图1所示为带有隔离式分流传感器的三相系统的功能组件。在该架构中,每相一个独立器件测量分流传感器两侧的电压。这些器件可以是隔离的delta-sigma调制器或计量模拟前端(AFE)微控制器(MCU)。由于分流传感器件是隔离的,因此每个器件必须具有单独的电源。7k1EETC-电子工程专辑

7k1EETC-电子工程专辑

图1:具有隔离分流传感器的多相系统的功能组件7k1EETC-电子工程专辑

基于其与分流传感器件通信的能力选择后端器件(如图1所示)。例如,若您将隔离调制器用作分流传感器件,则选择带有数字滤波器的后端器件。这些数字滤波器可构成独立器件的一部分,也可集成在计量MCU中。或者,若您将计量AFE用作分流传感器件,则选择具有串行外设接口或通用异步接收器发送器接口的后端器件。7k1EETC-电子工程专辑

要计算有功电能,除客户负载的电流外,还需要测量电源电压。电阻分压器通常将电源电压转换为模数转换器可感测的范围。在具有隔离式分流传感器的多相系统中,您可在同一器件上实现电源电压检测,以检测分流器上的电压,或者若器件的电压检测与分流检测同步,则可在后端器件上实现。若后端器件正在感测电压,则无需隔离,因为仍然可在多相上测量电压,而后端器件上没有大的破坏性电压。7k1EETC-电子工程专辑

为防止后端器件上的危险电压(因为分流器本身不具有隔离功能),有必要将通信与分流传感器件隔离到后端器件。这种隔离可集成在分流传感器件中,也可是单独的数字隔离器器件。7k1EETC-电子工程专辑

有两种方法可实现隔离分流电流传感。第一种方法,如图2所示,涉及使用计量AFE。在这种方法中,计量AFE计算主要计量(电压、电流、功率等),而非让后端器件执行这些计算。在分流传感器件上计算这些参数减少了后端装置所需的处理,并在计量和主机功能之间提供了良好分离。7k1EETC-电子工程专辑

0505-TI-2.JPG7k1EETC-电子工程专辑

图2:使用计量AFE的隔离分流传感器7k1EETC-电子工程专辑

隔离式分流传感的第二种方法是使分流传感器件仅检测电流,并让计量MCU执行计量计算。图3所示为此方法的一个示例。这种架构的优点是它更容易在相位之间进行参数计算,例如测量不同相位之间的角度。7k1EETC-电子工程专辑

0505-TI-3.JPG7k1EETC-电子工程专辑

图3:使用隔离调制器的隔离分流传感器7k1EETC-电子工程专辑

结论

我们可使用分流电流传感器和电容降电源设计磁免疫电子仪表。7k1EETC-电子工程专辑

通过遵循这些防篡改技术,可阻止或至少减轻仪表篡改事件,从而在供电时减少效率低下问题。7k1EETC-电子工程专辑

ASPENCORE
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
  • 5G毫米波空口测试挑战与解决方法 Sub-6GHz频段可以沿用4G时期的一些技术,与之相关的射频器件产业链也相对成熟,但由于该频段资源有限,业界将目光投向了资源相对丰富的毫米波频段。毫米波频段的优势是具备大量的可用频谱带宽、波束窄、方向性好等,但这也将给未来5G终端及基站的测试带来诸多挑战。本文将从测试角度探讨毫米波芯片带来的挑战及解决方法。
  • 用于功率电子设计的高性能SiC MOSFET技术 SiC的性能潜力无可争议。目前要应对的主要挑战是确定哪种设计方法在应用中获得最大的成功。CoolSiC MOSFET在开关操作和损耗方面拥有出色性能。其中一个亮点是能够利用零栅偏压关断器件,这使得碳化硅晶体管设计概念成为目前唯一真正的“正常关断”器件。
  • 提高智能电表全生命周期的隐私性与安全性 在智能电表的运行生命周期中,安全威胁可能以多种形式出现。公共事业单位必须考虑许多因素,并针对不同的攻击类型预先准备,以确保客户受到充分保护。那么,公共事业单位如何确保他们的智能电表保障各方数据安全与隐私?
  • 你真的了解无源元件吗? 通常,BOM上的无源元件数量是IC数量的五倍或更多倍。虽然它们中有许多是无关紧要的,但是又有许多非常重要。此外,随着工作频率常常达到GHz和数GHz范围,它们的第二级和第三级特性以及一致性变得更加重要。
  • IOTA技术将会如何改变物联网设计? IOTA是基于一种名为Tangle的新的分布式分类帐,它克服了当前区块链设计的低效率,在去中心化的点对点解决方案中引入了一种新的共识方法。随着联网设备的不断增长以及设备间互操作性的增强,IOTA和Tangle的可能应用将越来越多。尤其在工业4.0的复杂基础设施中,因其独有的特性,IOTA愈加引发人们的兴趣。
  • 为汽车应用提供连续的车道准确定位 如今,先进的单频带GNSS接收器能够在开阔的天空条件下满足V2X、ADAS和自动驾驶的高精度要求。为了能在各类环境中可靠地服务,GNSS接收机需要克服在城市和其它挑战性的环境中的局限性。本文演示了如何使用基于GNSS校正服务和车辆动态模型的多波段RTK惯性导航系统实现这一目标。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告