广告

边缘与网关集成,拓展人工智能广阔疆域

时间:2019-06-03 作者:Cliff Ortmeyer,Premier Farnell 和e络盟全球科技产品营销与解决方案开发 阅读:
得益于在亚马逊Alexa 和苹果Siri 等消费设备和服务中的广泛应用,机器学习和人工智能 (AI) 已成为主流技术。事实证明,这些系统能精准识别会话语音并在复杂视觉场景中辨认和说出对象名称。Facebook 称其每天运用该技术执行约 60 亿次翻译任务。然而,人工智能的应用远不仅限于消费者服务领域。
广告
ASPENCORE

得益于在亚马逊Alexa 和苹果Siri 等消费设备和服务中的广泛应用,机器学习和人工智能 (AI) 已成为主流技术。事实证明,这些系统能精准识别会话语音并在复杂视觉场景中辨认和说出对象名称。Facebook 称其每天运用该技术执行约 60 亿次翻译任务。然而,人工智能的应用远不仅限于消费者服务领域。ygZEETC-电子工程专辑

人工智能在工业控制和类似应用领域就拥有大量实际运用。这些应用对机器学习的部署提出了更多额外要求,例如实时性能管理和商业敏感数据处理等。而人工智能技术具备对复杂数据进行分段和分类的能力,因而正逐渐成为下一代机器状态监控系统和流程优化的主要选择。ygZEETC-电子工程专辑

预测性维护为联网工业应用提供高投资回报率

对于联网工业应用而言,可实现高投资回报的预测性维护是一种备受追捧的应用实例。预测性维护中的状态监控不仅可以减少现场检查的频次,还能降低维护成本。如果系统能准确地识别出设备部件的剩余使用寿命,便可以把部件更换时间安排在低产时段,避免作业期间发生故障的风险;而若采用的是故障发生再维修的方案,则需组建一支成本更高昂的快速响应团队。部署预测性维护的企业已经实现了20% 到 25% 的效率增益。ygZEETC-电子工程专辑

人工智能在预测性维护等应用环境中的优势在于它能从避开确定性算法的数据中找出规律。例如,温度和振动偏差通常呈正态,但某些组合和时间序列加在一起则可能产生问题。基于人工智能的模型可以解译大量的时间序列数据,从而更好地了解特定部件的故障状况。ygZEETC-电子工程专辑

通过本地处理为基于云的人工智能系统添砖加瓦

当前,人工智能系统仍然存在一个问题,即常常依赖于云服务器中可用的计算能力。而在消费者使用的人工智能应用中,只有极少数能够对使用机器学习构建的模型执行本地推断。所谓推断,就是将新输入值应用于训练模型,使模型能够确定输入值含义的过程。ygZEETC-电子工程专辑

对于工业企业用户而言,这种远程执行问题重重,原因有以下几点:其一是敏感运营数据的机密性;其次是及时性。许多基于云的人工智能系统执行任务,如将文本从一种语言翻译成另一种语言时,出现可变延迟,甚至长延迟都是可以接受的。但对于采用人工智能进行运行控制的工业系统而言,情况却并非如此。其三,通信带宽可能不足,以致无法将充足的数据传送至云端进行可靠推断。这使得对人工智能模型的本地处理,尤其本地推断能力的需求更加强烈。而对于模型训练的计算密集型过程,将其卸载到强大的云服务器通常将还是较为明智的做法。ygZEETC-电子工程专辑

实现上述本地处理有两种方法。一种是使用设备自身可用的计算能力,不过设备可能没有充裕的备用处理能力来运行异常复杂的模型。若基于设备的处理不可行,另一种办法则是把处理过程全部或部分卸载到其他设备。例如,设备本身运行简化后的人工智能模型,执行数据初始分析,而附近的网关或板级计算机负责运行功能更强大的模型。本地网关甚至可以自行训练并优化模型,无需将训练传递到云服务器上。ygZEETC-电子工程专辑

设备上的人工智能可提供最低的通信延迟。然而,本地网关具备更快的处理速度,可能超过性能较低的设备处理器,并能提供最佳延迟和吞吐量参数。无监督机器学习系统可以在传感器读数中找出规律,并将侦测到的规律而非原始传感器数据传送至网关或本地服务器,这极大地减轻了通信负担。随后,使用有监督的人工智能技术训练出的模型就可以分析这些规律并确定它们的含义。ygZEETC-电子工程专辑

20190529-008.jpgygZEETC-电子工程专辑

 ygZEETC-电子工程专辑

寻到合适的学习技术解决方案

人工智能可算作一种强大的工业控制技术,然而相关用户却面临着缺乏充分利用这种技术所需的深度知识和经验的问题。开发人员首当其冲,面临着采用哪种机器学习策略的抉择。当前,大多数基于云的人工智能系统都使用深度学习:一种需要使用功能强大的计算机的计算密集型技术。但深度学习只是实现人工智能众多方法中的一种。它属于一种更宽泛类别的有监督学习技术,更适用于工业系统处理的数据类型。有监督学习是指训练数据已预先标记。标签与输入数据的匹配使深度学习系统可以对以往从未见过的图像进行分类。ygZEETC-电子工程专辑

机器学习模型的训练不仅仅依赖于已标记数据。聚类等无监督机器学习算法可以在没有其他额外辅助的情况下找出数据规律,该过程在使用多个传感器或输入的时间序列行为很关键的工业控制系统中非常有用。以对机床的状态监控为例,振动强度可能无法说明有问题,但可能是该过程的结果。时间序列数据的移动规律配上温度的快速变化,可能表明存在需要维护的问题。若直接使用源数据无法显示出清晰的规律,数据将被划分成易于区别的多个簇,从而揭示出异常值。工业开发人员需要解决的问题是如何确定目标应用中需部署的机器学习形式。ygZEETC-电子工程专辑

Octonion为此开发出了一项解决方案Brainium,一款可为开发人工智能解决方案和物联网系统的工程师大幅缩短学习曲线的架构。Brainium高度灵活,可在设备、网关和云端三层运行,能够满足工业用户的需求。用户可自行确定适合其所需部署环境的最佳方案。ygZEETC-电子工程专辑

人工智能已经实现了向云、网关及边缘的过渡,并且当前边缘与网关的集成也已被证明可以扩展人工智能的应用范围。人工智能技术显然已经成为各种工业应用中不可或缺的组成部分。哪种人工智能方案更适合某种特定应用情景完全取决于应用开发人员。可喜的是,目前已经有许多解决方案可供选择,且能够满足当前以及未来相当长一段时间内对数据管理和控制的要求。ygZEETC-电子工程专辑

 ygZEETC-电子工程专辑

ASPENCORE
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 光学计算有望彻底改变AI性能的游戏规则 初创公司Lightmatter专注于开发针对AI加速的光学计算处理器,在第32届Hot Chips大会上展示了一款测试芯片。该处理器利用硅光子学和MEMS技术,通过毫瓦级激光光源供电,可以光速(在硅片中)执行矩阵矢量乘法。基于此次测试芯片的首个商用产品将于2021年秋季推出, 它是一款带光学计算芯片的PCIe卡,专为数据中心AI推理工作负载而设计。
  • 安谋中国“周易”Z2 AIPU正式发布,性能翻倍、效率翻番 10月13日,安谋科技(中国)有限公司(“安谋中国”)正式发布“周易”Z2 AIPU(AI Processing Unit),单核算力最高可达4TOPS,较“周易”Z1 AIPU的单核算力提高一倍,同时支持多达32核的可扩展配置,从而能够在单个SoC中实现128TOPS的强大算力。
  • 利用嵌入式AI,将大数据转变为智能数据 工业4.0应用产生大量的复杂数据——大数据。传感器和可用数据源越来越多,通常要求机器、系统和流程的虚拟视图更详细。这自然会增加在整个价值链上产生附加值的潜力。但与此同时,有关如何挖掘这种价值的问题不断出现。毕竟,用于数据处理的系统和架构变得越来越复杂。只有使用相关、优质且有用的数据,也就是智能数据,才能挖掘出相关的经济潜力。
  • AI芯片:技术发展方向及应用场景落地 经过几年的喧闹后,AI应用场景的落地成为最大难题。AI芯片的设计不是简单的高性能微处理器硬件设计,而是涉及应用场景特定需求和算法的软硬件一体化设计。那么,AI芯片的技术发展未来在哪里?如何真正实现AI场景落地实施和商用呢?
  • 人工智能在自动驾驶车辆中的作用 自动驾驶车辆在农业、运输和军事等领域开始成为一种现实,普通消费者在日常生活中使用自动驾驶车的那一天也在迅速来临。自动驾驶车辆根据传感器信息和AI算法来执行必要的操作,它需要收集数据、规划并执行行驶路线。而这些不同的任务,尤其是规划和执行行驶路线需要非传统的编程方法,它依赖AI中的机器学习技术。
  • AI芯片细分市场的金字塔结构 如今,AI工作负载仅仅意味着运行深度学习,这是目前的市场需求所在。但市场需求是多变的。尽管大多数AI训练都在数据中心(包括超大规模云端)和工作站上进行,但AI推理却随处可见:在云端、在工作站、在边缘……尤其是边缘端。
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了