向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

边缘与网关集成,拓展人工智能广阔疆域

时间:2019-06-03 作者:Cliff Ortmeyer,Premier Farnell 和e络盟全球科技产品营销与解决方案开发 阅读:
得益于在亚马逊Alexa 和苹果Siri 等消费设备和服务中的广泛应用,机器学习和人工智能 (AI) 已成为主流技术。事实证明,这些系统能精准识别会话语音并在复杂视觉场景中辨认和说出对象名称。Facebook 称其每天运用该技术执行约 60 亿次翻译任务。然而,人工智能的应用远不仅限于消费者服务领域。

得益于在亚马逊Alexa 和苹果Siri 等消费设备和服务中的广泛应用,机器学习人工智能 (AI) 已成为主流技术。事实证明,这些系统能精准识别会话语音并在复杂视觉场景中辨认和说出对象名称。Facebook 称其每天运用该技术执行约 60 亿次翻译任务。然而,人工智能的应用远不仅限于消费者服务领域。FTZEETC-电子工程专辑

人工智能在工业控制和类似应用领域就拥有大量实际运用。这些应用对机器学习的部署提出了更多额外要求,例如实时性能管理和商业敏感数据处理等。而人工智能技术具备对复杂数据进行分段和分类的能力,因而正逐渐成为下一代机器状态监控系统和流程优化的主要选择。FTZEETC-电子工程专辑

预测性维护为联网工业应用提供高投资回报率

对于联网工业应用而言,可实现高投资回报的预测性维护是一种备受追捧的应用实例。预测性维护中的状态监控不仅可以减少现场检查的频次,还能降低维护成本。如果系统能准确地识别出设备部件的剩余使用寿命,便可以把部件更换时间安排在低产时段,避免作业期间发生故障的风险;而若采用的是故障发生再维修的方案,则需组建一支成本更高昂的快速响应团队。部署预测性维护的企业已经实现了20% 到 25% 的效率增益。FTZEETC-电子工程专辑

人工智能在预测性维护等应用环境中的优势在于它能从避开确定性算法的数据中找出规律。例如,温度和振动偏差通常呈正态,但某些组合和时间序列加在一起则可能产生问题。基于人工智能的模型可以解译大量的时间序列数据,从而更好地了解特定部件的故障状况。FTZEETC-电子工程专辑

通过本地处理为基于云的人工智能系统添砖加瓦

当前,人工智能系统仍然存在一个问题,即常常依赖于云服务器中可用的计算能力。而在消费者使用的人工智能应用中,只有极少数能够对使用机器学习构建的模型执行本地推断。所谓推断,就是将新输入值应用于训练模型,使模型能够确定输入值含义的过程。FTZEETC-电子工程专辑

对于工业企业用户而言,这种远程执行问题重重,原因有以下几点:其一是敏感运营数据的机密性;其次是及时性。许多基于云的人工智能系统执行任务,如将文本从一种语言翻译成另一种语言时,出现可变延迟,甚至长延迟都是可以接受的。但对于采用人工智能进行运行控制的工业系统而言,情况却并非如此。其三,通信带宽可能不足,以致无法将充足的数据传送至云端进行可靠推断。这使得对人工智能模型的本地处理,尤其本地推断能力的需求更加强烈。而对于模型训练的计算密集型过程,将其卸载到强大的云服务器通常将还是较为明智的做法。FTZEETC-电子工程专辑

实现上述本地处理有两种方法。一种是使用设备自身可用的计算能力,不过设备可能没有充裕的备用处理能力来运行异常复杂的模型。若基于设备的处理不可行,另一种办法则是把处理过程全部或部分卸载到其他设备。例如,设备本身运行简化后的人工智能模型,执行数据初始分析,而附近的网关或板级计算机负责运行功能更强大的模型。本地网关甚至可以自行训练并优化模型,无需将训练传递到云服务器上。FTZEETC-电子工程专辑

设备上的人工智能可提供最低的通信延迟。然而,本地网关具备更快的处理速度,可能超过性能较低的设备处理器,并能提供最佳延迟和吞吐量参数。无监督机器学习系统可以在传感器读数中找出规律,并将侦测到的规律而非原始传感器数据传送至网关或本地服务器,这极大地减轻了通信负担。随后,使用有监督的人工智能技术训练出的模型就可以分析这些规律并确定它们的含义。FTZEETC-电子工程专辑

20190529-008.jpgFTZEETC-电子工程专辑

 FTZEETC-电子工程专辑

寻到合适的学习技术解决方案

人工智能可算作一种强大的工业控制技术,然而相关用户却面临着缺乏充分利用这种技术所需的深度知识和经验的问题。开发人员首当其冲,面临着采用哪种机器学习策略的抉择。当前,大多数基于云的人工智能系统都使用深度学习:一种需要使用功能强大的计算机的计算密集型技术。但深度学习只是实现人工智能众多方法中的一种。它属于一种更宽泛类别的有监督学习技术,更适用于工业系统处理的数据类型。有监督学习是指训练数据已预先标记。标签与输入数据的匹配使深度学习系统可以对以往从未见过的图像进行分类。FTZEETC-电子工程专辑

机器学习模型的训练不仅仅依赖于已标记数据。聚类等无监督机器学习算法可以在没有其他额外辅助的情况下找出数据规律,该过程在使用多个传感器或输入的时间序列行为很关键的工业控制系统中非常有用。以对机床的状态监控为例,振动强度可能无法说明有问题,但可能是该过程的结果。时间序列数据的移动规律配上温度的快速变化,可能表明存在需要维护的问题。若直接使用源数据无法显示出清晰的规律,数据将被划分成易于区别的多个簇,从而揭示出异常值。工业开发人员需要解决的问题是如何确定目标应用中需部署的机器学习形式。FTZEETC-电子工程专辑

Octonion为此开发出了一项解决方案Brainium,一款可为开发人工智能解决方案和物联网系统的工程师大幅缩短学习曲线的架构。Brainium高度灵活,可在设备、网关和云端三层运行,能够满足工业用户的需求。用户可自行确定适合其所需部署环境的最佳方案。FTZEETC-电子工程专辑

人工智能已经实现了向云、网关及边缘的过渡,并且当前边缘与网关的集成也已被证明可以扩展人工智能的应用范围。人工智能技术显然已经成为各种工业应用中不可或缺的组成部分。哪种人工智能方案更适合某种特定应用情景完全取决于应用开发人员。可喜的是,目前已经有许多解决方案可供选择,且能够满足当前以及未来相当长一段时间内对数据管理和控制的要求。FTZEETC-电子工程专辑

 FTZEETC-电子工程专辑

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
  • 三星发布Exynos 9825处理器,7nmEUV工艺成亮点 就在即将发表新一代旗舰型智能手机 Galaxy Note 10 系列之前,韩国三星7日首先公布了新一代的高端处理器 Exynos 9825 的相关信息。根据内容指出,这款移动处理器采用了三星的 7 纳米 EUV 制程,号称可将晶体管性能提高 20% 到 30%,同时降低功耗达 30% 到 50%。
  • 中国集成电路人才何在? 中国集成电路产业面临一轮新形势,当人工智能和半导体已经成为了这个国家高优先级发展战略,芯片人才要支撑战略,人才的问题值得讨论,而且应该听听来自产学等各方的声音。从占全球产值的7%到50%这一比例来看,我们的人才缺口将达到35万到80万人……
  • 清华开发出全球首款异构融合类脑芯片“天机” 近年来,人工智能技术发展很快,但多数是从某个领域接近或超过人类智能,距离达到人类水平的人工通用智能(AGI,Artificial General Intelligence)还有很长的路要走。发展人工通用智能的方法主要有两种,一种是以神经科学为基础,尽量模拟人类大脑;另一种是以计算机科学为导向,让计算机运行机器学习算法。二者各有优缺点,但都代表人脑处理信息的部分模式。最新一期 《自然》 封面刊登了清华大学开发出的全球首款异构融合类脑芯片“天机”,提出了将神经科学与计算机科学异构融合的架构……
  • 存储器和晶圆代工厂商面临“Hyperscaler”科技巨头提 为了满足从云端运算到IoT等新应用需求,Google、Facebook和Amazon等“超大规模业者”(hyperscaler)正以AI/ML作为开发下一代架构的重要基础,重塑半导体产业…
  • AI会变成危险分子,是机器学习算法扭曲? 在大数据时代,隐私法正迅速成为任何数字安全对话的主要元素。对于那些业务建立在消费者数据之上的公司,消费者的信任正在发展成为其业务模式的重要组成部分。相比之下,人工智能的“公平性”还处于20年前隐私讨论的处境。它还没有上升到许多人的意识层面,至少目前还没有。
  • 三进制半导体诞生,逻辑比二进制更接近人类思维? 据国外媒体报道,韩国一个研究小组已经成功在一块大尺晶圆上开发出了世界上首个三进制半导体。其逻辑相比较现今的计算机使用二进制数字系统,更接近人类大脑的思维方式,在一般情况下,命题不一定为真或假,还可能为未知。这将有助于未来低功耗和人工智能芯片的开发……
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告