向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

为电动汽车选择合适的额定功率电阻

时间:2019-06-25 作者:Bertram Schott & Adrian Michael 阅读:
绕线电阻额定功率通常为持续功率,不足以支持电动汽车应用。典型应用是大电容预充电和放电,通常称为 “软启动”。这种情况下,电阻的脉冲处理能力也非常重要。结合理论基础与热性能有限元模拟,可以确定较长脉冲持续时间内的这种能力。所得具体结果便于快速评估不断变化的客户规格,提供合适的电阻。

简介

绕线电阻额定功率通常为持续功率,不足以支持电动汽车应用。典型应用是大电容预充电和放电,通常称为 “软启动”。这种情况下,电阻的脉冲处理能力也非常重要。结合理论基础与热性能有限元模拟,可以确定较长脉冲持续时间内的这种能力。所得具体结果便于快速评估不断变化的客户规格,提供合适的电阻。G4iEETC-电子工程专辑

绕线电阻容许脉冲负载

绕线功率电阻一般根据持续功率确定额定功率。然而,由于(电阻成分)用量多且热容量高,电阻成分和绕线仅在中等温升过程中即可吸收大量能量。因此,绕线功率电阻是脉冲负载应用的理想选择。G4iEETC-电子工程专辑

额定脉冲负载能力很重要

由于频率和电压转换器的广泛使用,额定脉冲负载能力变得越来越重要。脉冲负载能力通常只按一次脉冲的一定功率或能量和持续时间象征性规定。列出几个脉冲振幅和持续时间规定脉冲负载能力的情况极为少见。如果电阻所受脉冲冲击持续时间不在数据表给出的范围内,且超出绝热边界条件的范围,则很难计算最大允许脉冲负载。而理论基础结合有限元模拟,可以计算电阻几乎无限脉冲持续间隔,即从非常短的脉冲到持续功率的热性能。G4iEETC-电子工程专辑

电动汽车需要脉冲负载能力

由于脉冲负载高,限制电容器充放电电流是绕线电阻在电动汽车领域中的典型应用。为了保持生产工艺尽可能简单,首选方法是将所有电子器件焊接到PCB上,而不使用 “外部” 电阻。这种情况下,可将若干小的绕线功率电阻直接焊到PCB上,取代单个大的绕线功率电阻。对于这类应用和生产,Vishay以AC-AT系列为重点,这是首款获得AEC-Q200认证的汽车级电阻。G4iEETC-电子工程专辑

脉冲负载产生热量

我们来看电阻散热,以便能够评估电脉冲负载的影响。一种有效方法是假定牛顿冷却定律成立,即温变率与热电阻及其冷却封装材料的温差成正比,后者温度是恒定的。在水泥型绕线电阻的情况下 (如AC-AT系列),封装材料是绕线四周的水泥。不过,以下论证也可用于漆包或充砂绕线电阻。G4iEETC-电子工程专辑

绝热边界条件下的脉冲负载

假定牛顿冷却定律成立,因此绕线或电阻成分瞬时温变与最大温度成正比,可得出描述绕线和电阻温度随时间变化的指数函数。G4iEETC-电子工程专辑

图1中,蓝线和红线分别显示瓷芯AC05-AT 47 Ω电阻及其绕线各自的脉冲负载极限。整个电阻最大脉冲负载能力通常是两条曲线的简单组合。一种方法是牛顿冷却型指数函数,图1中组合1,它远低于5秒标称功率规定的过载额定值10倍,因此低估了这一脉冲持续时间的脉冲负载能力。另一种方法,图1中组合2,高估了所示扭折处(约0.05秒处)脉冲负载能力,因为计算绕线温度极限时未考虑瓷芯的热量。G4iEETC-电子工程专辑

脉冲负载FE模拟

利用有限元(FE)模拟,通过电阻器内的热流和温度分布很容易看出整个AC05-AT电阻在脉动电负载下缓慢变热。电阻线在脉冲过程中升温,然后冷却。电阻所有其他部分延迟一定时间被热脉冲加热。脉冲负载持续时间在有限元模拟中不重要,只要边界条件得当。因此,从绕线(ms 范围)到电阻近乎连续负载 (100s 范围)绝热角度看,几乎可以模拟电阻和绕线任何脉冲持续时间内的温度。从而可根据绕线规定的最大允许温度来确定允许的最大电脉冲负载。G4iEETC-电子工程专辑

延伸归纳

通过延伸绕线热扩散特征时间,可以归纳多个脉冲持续时间的有限元模拟结果。从而确定修正系数,结合指数函数,根据牛顿冷却定律给出温度。G4iEETC-电子工程专辑

非绝热边界条件下的脉冲负载

上述修正系数可从绕线角度计算非绝热边界条件下的脉冲负载极限(图2,非绝热极限)。不过,未涵盖长脉冲持续时间整个电阻的脉冲负载极限。但是,如果用整个电阻热扩散特征时间延伸较长脉冲持续时间,非绝热极限曲线可以涵盖连续负载极限曲线(图2)。G4iEETC-电子工程专辑

用于其他阻值和电阻

通过适当延伸,可以归纳特定电阻(本文为AC05-AT,47 Ω)热状态的有限元模拟结果。这样,所得结果不仅可以用于所有阻值(绕线配置)的AC05-AT,而且可以应用于所有其他AC-AT类型的电阻,因为它们的结构相似。G4iEETC-电子工程专辑

这种方法甚至可以用于所有其他相似类型的电阻,如G200系列 ,无需额外的FE模拟,因此效率极高。对于客户的好处是能够及时准确地解决脉冲负载能力的问题。G4iEETC-电子工程专辑

20190621-600.jpgG4iEETC-电子工程专辑

图1: R = 47 Ω瓷芯AC05-AT(蓝曲线 )和电阻线 (红曲线 )脉冲负载限制。两条曲线通常组合在一起:组合1(黑曲线)低估允许的过载(蓝点);组合 2(绿线)高估所示扭折处脉冲负载极限(约0.05 秒)。G4iEETC-电子工程专辑

20190621-601.jpgG4iEETC-电子工程专辑
G4iEETC-电子工程专辑
图2: 从绕线角度看非绝热边界条件下最大允许脉冲负载(蓝曲线),根据相应热扩散特征时间进行校正 (红曲线)。常见极限曲线很大程度上低估脉冲持续时间的脉冲负载能力,图中所示从0.1秒到10秒不等,供参考(黑虚线)。G4iEETC-电子工程专辑

本文同步刊登于电子工程专辑杂志2019年6月刊G4iEETC-电子工程专辑

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
  • 解剖电压反馈运算放大器 工程师最常向我提的一个请求是对电压反馈运算放大器和电流反馈运算放大器进行比较。但如果不弄清每种运算放大器如何工作,是不可能确定某种应用应该选择哪种运放的。 本文重点介绍了电压反馈运算放大器。
  • 6个公式搞懂全差分放大器如何工作 全差分放大器与运算放大器相似,但又不完全相同。若同时使用两个输入,该电路就充当差分输入/差分输出放大器。若使用两个输入中的任何一个(另一个输入接地),该电路就是充当单端输入/差分输出放大器。
  • 一种直接测量运算放大器输入差分电容的方法 在诸如运算放大器之类的反馈放大器中,总有效输入电容由CDM与负输入共模电容(或对地的CCM–)并联组成。CDM难以测量的原因之一是运算放大器的主要任务是防止两个输入不相关。与测量CDM的难度相比,直接测量对地的正输入共模电容CCM+相对容易一些。
  • GE Healthcare CARESCAPE VC150生命体征监护仪 GE Healthcare CARESCAPE VC150生命体征监护仪,由电池供电,可无损确定收缩压、舒张压、平均动脉压(MAP)、脉搏率、呼吸率(仅Nellcor和Masimo技术提供)、血氧饱和度和温度。这一系列功能是通过由几块专用PCB板组成的设计实现的。
  • 超低功耗可穿戴医疗设备的四种能量采集方法 更大的电池容量、更长的电池寿命,而电池体积不能增大,对电池供电联网设备诸如此类的需求越来越多。电池技术正通过利用能量收集满足越来越多的需求。能量收集解决方案已被设计为电池的辅助电源,或作为不受能耗限制的可穿戴设备永久使用的独立电源。
  • 嵌入式平台上的自动音频接口测试 从模拟音频到数字音频端口,各种类型的接口层出不穷。每种类型的接口在设计和测试中都面临自身的挑战。在组装和生产过程中,这些接口的测试涵盖了整个路径,从模拟或数字前端到处理单元的数字音频输入端口。本文介绍一种常用的技术,用于检测音频接口测试中与装配相关的故障问题。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告