向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

MOSFET Qrr——在追求能效时,忽视这一参数是危险的

时间:2019-09-06 作者:Mike Becker,安世半导体 阅读:
在电流流经MOSFET体二极管的应用中,反向恢复电荷Qrr会引起一些重大的挑战,设计工程师需要仔细处理。在低功耗充电器和适配器产品应用中,其开关频率高且负载电流一般小于5A,对I2R损耗的关注较少,设计工程师应密切关注动态损耗。选择低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI辐射。
电子工程专辑 EE Times China -提供有关电子工程及电子设计的最新资讯和科技趋势

在为许多类型的消费和工业应用设计电源时,效率往往是最重要的因素,这些应用包括手机、平板电脑和笔记本电脑、可充电的电动工具和LED照明,以及不计其数的其它产品。 一些应用需要高效率,以满足法定要求,或只是减少散热,从而实现更小、更轻的最终产品设计。选择同步MOSFET来满足所有这些要求可能是一项较为困难的任务。TyXEETC-电子工程专辑

当然,工程师首先会查看显眼的数据表参数,选择电压和电流额定值合适的器件。由于效率很重要,大多数器件首先按照RDS(on)选择。 然后依据开关频率选择动态参数;例如,栅极电荷Qg和Qgd可以很好地反映栅极的预期损耗。Qg品质因数(FOM = RDS(on) x QG)也可以很好地反映开关应用中MOSFET的效率,同时MOSFET的电容,Ciss、Coss、Crss可以反映漏极-源极尖峰和栅极扰动是否会成为问题。低电容也有助于提高效率。最后,器件必须能够适合于您的设计,所以您需要查看其尺寸和所采用的封装。TyXEETC-电子工程专辑

然而,还有另一个参数Qrr常常被忽略,它通常位于数据表的底部。在电流流经MOSFET体二极管的应用中,例如,在同步整流器和续流应用中,反向恢复电荷Qrr会引起一些重大的挑战,设计工程师需要仔细处理。TyXEETC-电子工程专辑

Qrr或反向恢复电荷是当二极管正向偏置时,在MOSFET体二极管的PN结累积的电荷。在大多数应用中,电流在每个开关周期流过体二极管两次,导致电荷累积。之后的电荷释放,要么是在MOSFET内部,要么是作为附加电流(Irr)短暂地流过高边MOSFET,并在系统中造成额外的损耗。TyXEETC-电子工程专辑

尖峰特性

反向恢复电流(Irr)也与PCB的寄生电感相互作用,导致漏极-源极电压(VDS)出现尖峰。这些尖峰可以通过降低PCB的电感或选择Qrr较低的MOSFET来降低。 如果不能在设计阶段解决尖峰问题,往往导致工程师不得不使用更高的电压等级,因此项目后期需要使用价格更高昂的MOSFET。TyXEETC-电子工程专辑

但这仍然留下了一个问题。如果不加以处理,则漏极引脚上的尖峰可以经由电容耦合到栅极引脚上,导致所谓的“栅极扰动”。如果栅极扰动超过MOSFET的阈值电压,则发生交叉导通,且MOSFET可能在应该关闭时导通。如果高端MOSFET和低端MOSFET同时导通,电源轨之间会产生直通电流,造成较大的功率损耗,并有可能损坏MOSFET。TyXEETC-电子工程专辑

让我们来更详细地研究一下这个问题。在大多数应用所需的死区时间,电流在每个开关周期会流过体二极管两次。让我们首先考量一下在同步场效应晶体管导通之前会发生什么。由于在死区时间内电流将流经体二极管,因此有些负载电流将作为积累电荷(Qrr)被捕获。TyXEETC-电子工程专辑

当同步场效应晶体管导通时,则积累的电荷在MOSFET内部释放。因此,部分负载电流由于Qrr效应而损耗,导致同步场效应晶体管内产生I2R损耗。TyXEETC-电子工程专辑

在第二种情况下,当高边MOSFET导通时,MOSFET的体二极管再次发生反向偏置。附加电流Irr会短暂流经高边MOSFET,直到积累的电荷Qrr完全耗尽。电荷耗尽不是瞬间完成的,Irr通常会流动几十纳秒,直到Qrr耗尽。反向恢复时间Trr被引用于数据表中。在这种情况下,Irr会在高边MOSFET中导致额外的I2R损耗,如图1所示。TyXEETC-电子工程专辑

20190906-001.pngTyXEETC-电子工程专辑

图1:Irr导致高边MOSFET中额外的I2R损耗TyXEETC-电子工程专辑

Vds尖峰

反向恢复电流尖峰Irr也与PCB的寄生电感相互作用,产生电压尖峰,其中:TyXEETC-电子工程专辑

V = L x (di/dt)。TyXEETC-电子工程专辑

MOSFET的耐压值选择应该适当,以确保击穿电压额定值(BVDS)高于最大尖峰值;通常采用80%降额。测量的尖峰值为80V 时,Vds的耐压一般要求采用BVDS至少100V的MOSFET。TyXEETC-电子工程专辑

栅极扰动

当Vds尖峰出现时,设计人员还应该在他们的应用中查看栅极扰动。由于MOSFET的所有三个端子之间都有电容,因此漏极引脚上的任何尖峰也将通过电容耦合到MOSFET的栅极引脚上。在极端情况下,如果栅极扰动超过MOSFET的阈值电压,则MOSFET会进入导通状态。TyXEETC-电子工程专辑

预驱电路通常需要设置死区时间,以保证高边MOSFET和低边MOSFET不能同时导通。但是,当栅极扰动发生时,低边与高边MOSFET同时导通,导致直通电流在电源轨之间流动,从而引起I2R损耗过大,在极端情况下会导致MOSFET损坏。TyXEETC-电子工程专辑

所有MOSFET都不是相同的

对于100V MOSFET,在4~8mΩ导通电阻区间内就不同MOSFET供应商的数据表参数进行比较时,可以发现不同供应商的Qrr存在很大差异。对于具有类似导通电阻的MOSFET,安世半导体的NextPower 100V技术提供的Qrr通常比其他MOSFET供应商低30%到100%。TyXEETC-电子工程专辑

在典型应用中,因为很难分离和测量单个Qrr效应,因此我们依赖于仿真来模拟其效应。TyXEETC-电子工程专辑

对7mΩ MOSFET PSMN6R9-100YSF的Spice 仿真显示,当Qrr增大至2倍时,产生的尖峰电压可以增加约8%,如图2所示。TyXEETC-电子工程专辑
20190906-002.jpgTyXEETC-电子工程专辑
图2:通过一款7mΩ MOSFET的Spice仿真显示,当Qrr增大至2倍时,产生的尖峰电压增加约8%TyXEETC-电子工程专辑

选择低Qrr MOSFET也可以显著提高效率,特别是在低负载电流下。TyXEETC-电子工程专辑

结论

在低功耗充电器和适配器产品应用中,其开关频率高且负载电流一般小于5A,对I2R损耗的关注较少,设计工程师应密切关注动态损耗。选择低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI辐射,如图3所示。TyXEETC-电子工程专辑
20190906-003.jpgTyXEETC-电子工程专辑
图3:低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI辐射TyXEETC-电子工程专辑

本文同步刊登于电子工程专辑杂志2019年9月刊TyXEETC-电子工程专辑

电子工程专辑 EE Times China -提供有关电子工程及电子设计的最新资讯和科技趋势
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
  • 解剖电压反馈运算放大器 工程师最常向我提的一个请求是对电压反馈运算放大器和电流反馈运算放大器进行比较。但如果不弄清每种运算放大器如何工作,是不可能确定某种应用应该选择哪种运放的。 本文重点介绍了电压反馈运算放大器。
  • 6个公式搞懂全差分放大器如何工作 全差分放大器与运算放大器相似,但又不完全相同。若同时使用两个输入,该电路就充当差分输入/差分输出放大器。若使用两个输入中的任何一个(另一个输入接地),该电路就是充当单端输入/差分输出放大器。
  • 一种直接测量运算放大器输入差分电容的方法 在诸如运算放大器之类的反馈放大器中,总有效输入电容由CDM与负输入共模电容(或对地的CCM–)并联组成。CDM难以测量的原因之一是运算放大器的主要任务是防止两个输入不相关。与测量CDM的难度相比,直接测量对地的正输入共模电容CCM+相对容易一些。
  • GE Healthcare CARESCAPE VC150生命体征监护仪 GE Healthcare CARESCAPE VC150生命体征监护仪,由电池供电,可无损确定收缩压、舒张压、平均动脉压(MAP)、脉搏率、呼吸率(仅Nellcor和Masimo技术提供)、血氧饱和度和温度。这一系列功能是通过由几块专用PCB板组成的设计实现的。
  • 超低功耗可穿戴医疗设备的四种能量采集方法 更大的电池容量、更长的电池寿命,而电池体积不能增大,对电池供电联网设备诸如此类的需求越来越多。电池技术正通过利用能量收集满足越来越多的需求。能量收集解决方案已被设计为电池的辅助电源,或作为不受能耗限制的可穿戴设备永久使用的独立电源。
  • 嵌入式平台上的自动音频接口测试 从模拟音频到数字音频端口,各种类型的接口层出不穷。每种类型的接口在设计和测试中都面临自身的挑战。在组装和生产过程中,这些接口的测试涵盖了整个路径,从模拟或数字前端到处理单元的数字音频输入端口。本文介绍一种常用的技术,用于检测音频接口测试中与装配相关的故障问题。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告