广告

MOSFET Qrr——在追求能效时,忽视这一参数是危险的

时间:2019-09-06 作者:Mike Becker,安世半导体 阅读:
在电流流经MOSFET体二极管的应用中,反向恢复电荷Qrr会引起一些重大的挑战,设计工程师需要仔细处理。在低功耗充电器和适配器产品应用中,其开关频率高且负载电流一般小于5A,对I2R损耗的关注较少,设计工程师应密切关注动态损耗。选择低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI辐射。
广告

在为许多类型的消费和工业应用设计电源时,效率往往是最重要的因素,这些应用包括手机、平板电脑和笔记本电脑、可充电的电动工具和LED照明,以及不计其数的其它产品。 一些应用需要高效率,以满足法定要求,或只是减少散热,从而实现更小、更轻的最终产品设计。选择同步MOSFET来满足所有这些要求可能是一项较为困难的任务。

当然,工程师首先会查看显眼的数据表参数,选择电压和电流额定值合适的器件。由于效率很重要,大多数器件首先按照RDS(on)选择。 然后依据开关频率选择动态参数;例如,栅极电荷Qg和Qgd可以很好地反映栅极的预期损耗。Qg品质因数(FOM = RDS(on) x QG)也可以很好地反映开关应用中MOSFET的效率,同时MOSFET的电容,Ciss、Coss、Crss可以反映漏极-源极尖峰和栅极扰动是否会成为问题。低电容也有助于提高效率。最后,器件必须能够适合于您的设计,所以您需要查看其尺寸和所采用的封装。

然而,还有另一个参数Qrr常常被忽略,它通常位于数据表的底部。在电流流经MOSFET体二极管的应用中,例如,在同步整流器和续流应用中,反向恢复电荷Qrr会引起一些重大的挑战,设计工程师需要仔细处理。

Qrr或反向恢复电荷是当二极管正向偏置时,在MOSFET体二极管的PN结累积的电荷。在大多数应用中,电流在每个开关周期流过体二极管两次,导致电荷累积。之后的电荷释放,要么是在MOSFET内部,要么是作为附加电流(Irr)短暂地流过高边MOSFET,并在系统中造成额外的损耗。

尖峰特性

反向恢复电流(Irr)也与PCB的寄生电感相互作用,导致漏极-源极电压(VDS)出现尖峰。这些尖峰可以通过降低PCB的电感或选择Qrr较低的MOSFET来降低。 如果不能在设计阶段解决尖峰问题,往往导致工程师不得不使用更高的电压等级,因此项目后期需要使用价格更高昂的MOSFET。

但这仍然留下了一个问题。如果不加以处理,则漏极引脚上的尖峰可以经由电容耦合到栅极引脚上,导致所谓的“栅极扰动”。如果栅极扰动超过MOSFET的阈值电压,则发生交叉导通,且MOSFET可能在应该关闭时导通。如果高端MOSFET和低端MOSFET同时导通,电源轨之间会产生直通电流,造成较大的功率损耗,并有可能损坏MOSFET。

让我们来更详细地研究一下这个问题。在大多数应用所需的死区时间,电流在每个开关周期会流过体二极管两次。让我们首先考量一下在同步场效应晶体管导通之前会发生什么。由于在死区时间内电流将流经体二极管,因此有些负载电流将作为积累电荷(Qrr)被捕获。

当同步场效应晶体管导通时,则积累的电荷在MOSFET内部释放。因此,部分负载电流由于Qrr效应而损耗,导致同步场效应晶体管内产生I2R损耗。

在第二种情况下,当高边MOSFET导通时,MOSFET的体二极管再次发生反向偏置。附加电流Irr会短暂流经高边MOSFET,直到积累的电荷Qrr完全耗尽。电荷耗尽不是瞬间完成的,Irr通常会流动几十纳秒,直到Qrr耗尽。反向恢复时间Trr被引用于数据表中。在这种情况下,Irr会在高边MOSFET中导致额外的I2R损耗,如图1所示。

20190906-001.png

图1:Irr导致高边MOSFET中额外的I2R损耗

Vds尖峰

反向恢复电流尖峰Irr也与PCB的寄生电感相互作用,产生电压尖峰,其中:

V = L x (di/dt)。

MOSFET的耐压值选择应该适当,以确保击穿电压额定值(BVDS)高于最大尖峰值;通常采用80%降额。测量的尖峰值为80V 时,Vds的耐压一般要求采用BVDS至少100V的MOSFET。

栅极扰动

当Vds尖峰出现时,设计人员还应该在他们的应用中查看栅极扰动。由于MOSFET的所有三个端子之间都有电容,因此漏极引脚上的任何尖峰也将通过电容耦合到MOSFET的栅极引脚上。在极端情况下,如果栅极扰动超过MOSFET的阈值电压,则MOSFET会进入导通状态。

预驱电路通常需要设置死区时间,以保证高边MOSFET和低边MOSFET不能同时导通。但是,当栅极扰动发生时,低边与高边MOSFET同时导通,导致直通电流在电源轨之间流动,从而引起I2R损耗过大,在极端情况下会导致MOSFET损坏。

所有MOSFET都不是相同的

对于100V MOSFET,在4~8mΩ导通电阻区间内就不同MOSFET供应商的数据表参数进行比较时,可以发现不同供应商的Qrr存在很大差异。对于具有类似导通电阻的MOSFET,安世半导体的NextPower 100V技术提供的Qrr通常比其他MOSFET供应商低30%到100%。

在典型应用中,因为很难分离和测量单个Qrr效应,因此我们依赖于仿真来模拟其效应。

对7mΩ MOSFET PSMN6R9-100YSF的Spice 仿真显示,当Qrr增大至2倍时,产生的尖峰电压可以增加约8%,如图2所示。
20190906-002.jpg
图2:通过一款7mΩ MOSFET的Spice仿真显示,当Qrr增大至2倍时,产生的尖峰电压增加约8%

选择低Qrr MOSFET也可以显著提高效率,特别是在低负载电流下。

结论

在低功耗充电器和适配器产品应用中,其开关频率高且负载电流一般小于5A,对I2R损耗的关注较少,设计工程师应密切关注动态损耗。选择低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI辐射,如图3所示。
20190906-003.jpg
图3:低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI辐射

本文同步刊登于电子工程专辑杂志2019年9月刊

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 用碳化硅MOSFET设计一个双向降压-升压转换器 随着电池和超级电容等高效储能设备的大量使用,朝向更好的电流控制发展成为一种趋势。双向DC/DC转换器可以保持电池健康,并延长其使用寿命。
  • 集成动态过流检测的智能锁电机驱动器设计方案 本文介绍了使用高电压GreenPAK的一个特定示例,描述了针对特定电机和电池组的集成设计定制方法。这是一种非常灵活的电机控制解决方案,采用可配置的内部逻辑,可满足设计人员的需求。而且将电机驱动器集成进GreenPAK中,可以将整个电路放入很小的物理空间。
  • 设计开关电源之前,必做的分析模拟和实验(之二) 环路控制是开关电源设计的一个重要部分。文章综述了目前可供选择的一些工具,让您在开始生产开关电源之前能够计算、模拟和测量您的原型,从而确保生产工作安全顺利。本文将主要讨论获取功率级动态响应和选择交越频率和相位裕度。
  • 采用片上网络(NoC)的新型FPGA数据架构赋能5G网络和数据 从5G网络的边缘到数据中心内部的交换机,通信和网络系统对芯片的功能带来了极大的压力,以支持其所需的计算能力和数据传输速率。传统的可编程逻辑为这些系统提供了灵活性和速率的最佳组合,但是近年来却因以太网等协议的速度提高到100G和400G而面临新挑战。
  • CMOS传感器在3D视觉、感测和度量中的应用 工厂已进入自动化工作,以提高产能和在产品查验和库存的方方面面节省时间和金钱。要优化这些因素,拥有视觉系统的机器需要更高速和以更佳性能工作。因应这些发展,2D视觉遇上了限制,使得3D视觉被广泛引进,以实施更高精度的质量检验,反向工程或物件量度任务。三角测量技术正在这些应用中获大量使用,鉴于三轴图像要求高分辨率,需要非常高速的的传感器。
  • 在开关电源转换器中,如何充分利用SiC器件的性能优势? 碳化硅MOSFET越来越多用于千瓦级功率水平应用,涵盖如通电源,和服务器电源,和快速增长的电动汽车电池充电器市场等领域。碳化硅MOSFET之所以有如此的大吸引力,在于与它们具有比硅器件更出众的可靠性,在持续使用内部体二极管的连续导通模式(CCM)功率因数校正(PFC)设计
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了