广告

在CMOS中构建MEMS: 一个不可能实现的梦想?

时间:2019-09-16 作者:Sally Ward-Foxton 阅读:
Nanusens有一个雄心勃勃的技术目标: 打造可靠、便宜,可与其接口专用集成电路(ASIC)构建在同一芯片上的CMOS微电子机械系统(MEMS)器件。节省的空间将足以改变消费类电子产品的游戏规则 。但从技术上分析,在CMOS中构建MEMS应该是不可能的……
广告
EETC https://www.eet-china.com

总部位于伦敦和巴塞罗那的欧洲创业公司Nanusens有一个雄心勃勃的技术目标: 打造可靠、便宜,可与其接口ASIC 构建在同一管芯上的CMOS微电子机械系统(MEMS)器件。节省的空间将足以改变消费类电子产品的游戏规则 。

在CMOS中构建MEMS应该是不可能的。CMOS并不是为机械结构设计的,它的特性至少比现有MEMS传感器结构小一个数量级,而且金属层非常薄。简单粗暴地缩小现有MEMS设计并不能解决这个问题,例如经典的、弹簧上的梳齿状质量块(proof mass)。

Nanusens的首席执行官Josep Montanyà说:“(结构上的)高应力梯度意味着,一旦通过蚀刻释放金属,硅氧化物会大量卷曲,所以结构不是平整的。”

20190911-001.jpg
内置于CMOS工艺后端的MEMS器件横截面图 (图自:Nanusens)

“用这些卷曲的金属制造有用的器件是一个巨大的挑战,因为除此之外,缝隙非常小,金属层非常薄。这对惯性传感器来说是另一个挑战,因为你通常需要一个大的质量块,而薄层材料很难做到这一点。”

在传统的MEMS工艺中,硅可能有40微米(µm)厚,但在0.18微米工艺中,典型的CMOS层厚度小于1微米。可以利用多层CMOS材料来制造尽可能大的质量块,但是在CMOS规格下刻蚀一个典型的质量块形状,会导致结构高度扭曲。由于高应力梯度,曲率半径很小。在大模板上,这意味着曲率很大。它们的大小也是有限度的,超过一个临界点,结构就会崩塌。

“一方面,(薄层)是一个挑战,因为你无法用此打造一个大的质量块,” Montanyà说。“但另一方面,这也是一个好处,因为它可以让你打造非常柔软的弹簧。它非常小的缝隙非常,会是一个挑战,因为曲率很大,所以设计可能崩塌。但只要正确设计,它就会带来好处,因为它能让你检测出小幅度的移动。如果缝隙更小,你就能感测到更小的绝对位移。”

然后就是寄生电容。典型的MEMS设计有两个管芯,在ASIC管芯和MEMS管芯之间有引线键合。这样会产生高达10皮法(pF)的寄生电容。将ASIC电路和MEMS电路放在同一个管芯上,可以将寄生电容降低到100 飞法(fF)左右(比典型的MEMS设计小2个数量级)。一些最新的MEMS产品也使用晶圆键合技术,通过将MEMS和ASIC更紧密地结合在一起来减少寄生电容。但Montanyà认为,Nanusens的器件相对来说仍更具有优势。

他表示:“(竞争对手的寄生电容)比我们的要大一个数量级以上,因为我们的设计不需要跑到管芯外面去,即使它键合在顶部。在同一个芯片内工作是大幅降低寄生电容的唯一方法。”

知识产权

虽然Nanusens申请了它的IP专利,但这种结构的确切设计仍然是个秘密。Montanyà暗示这种结构与现有的MEMS器件非常不同。“在传统的MEMS工艺中,通常有三层。但是在CMOS工艺中,有六个金属层……因而我们有更多的设计选项,去做一些奇怪的事情,” Montanyà说。

CMOS工艺也为Nanusens提供了几种参考材料: 铝、通孔用钨和硅氧化物。这使得一些新颖的设计概念成为可能。 Nanusens表示,CMOS MEMS器件还可以减少粘滞效应——当大多数MEMS加速度计受到极端外力时,这种效应会阻止其工作。当质量块接触到被限制空间的边缘时,粘滞效应就会发生。分子力把它粘在墙上,这种作用是不可逆的。粘滞取决于质量块的表面积和撞击能量。

Montanyà称:“传统的MEMS加速度计具有非常大的质量块以及1-2微米的间隙。由于我们的质量块很小,间隙只有0.3微米,所以积累的能量较少,撞击能量也较少。分离所需的力量也更小。”到目前为止测试的Nanusens加速度计样品已经显示出良好的对抗粘滞效果,它们经受了超过10000个开关循环的考验,每一次都相当于1000 G。该公司称,该测试样品的灵敏度也比大多数应用所需的高出一个数量级

市场问题

Nanusens计划将其技术应用于智能手机,但在过去的六个月里,他们将目标改为无线耳机,因为他们认为该市场规模将扩张、增长更快。

入耳式无线耳机包含电池、扬声器、麦克风和其他传感器,包括运动检测器和惯性传感器。该运动检测器具有两个功能:可以检测耳塞何时停用,并关闭耳塞以节省电力;还可以作为用户界面实现点击和双击动作。Nanusens预计在今年年底前推出运动检测芯片的样品。

耳塞中的惯性传感器作用在于,当我们说话时的耳骨振动,它都能检测到。骨传导传感器检测这种振动,融合来自麦克风采集的信息,进而帮助抑制环境噪声。Nanusens公司正在研发这种惯性传感器。

“我们可以把两个传感器都做得更小,” Montanyà说。“现如今,每个芯片是4立方毫米。我们可以把这两个传感器组合成一个1立方毫米多一点的芯片。这样可以节省超过6立方毫米的空间,而且由于PCB面积的减少,实际上可以节省更多的空间。” 在小小的耳塞里,他补充道,每立方毫米都有价值:节省下来的空间可以用于搭载更大的电池,更多的功能,更多的内存,或者只是让耳塞变得更小更轻。

20190911-002.jpg
图中红色高亮显示部分为Nanusens纳米机电系统(NEMS)传感器芯片布局。两个传感器占据了大约10%的芯片面积,每个结构的尺寸为100×150µm。(图自:Nanusens)

随着智能手机设计中耳机接口逐步淘汰,无线耳机市场将加速增长。未来的智能手机将配备无线耳机。“尽管这是一个巨大的市场,并且中国涌现出许多制造这些耳机的公司,但它们都使用参考设计(reference design)。”Montanyà说。“目前只有5家公司提供这些参考设计,我们正与这些公司洽谈。他们喜欢减小传感器尺寸,并且等待(我们产品的)样品融入他们的设计中。一旦我们得到一款这样的参考设计,销量将是巨大的。”

将公司的ASIC和MEMS IP整合到系统芯片(SoC)之中是下一个逻辑步骤,Nanusens已经与MCU制造商进行讨论,因为在MCU中嵌入一个运动检测器可以增加芯片级别的唤醒和休眠功能。Montanyà表示:“ 需要花一些时间才能看到这种整合是如何完成的,因为我们必须转到更低的工艺节点——这会很有意思,但我们还没有走到这一步。首先我们要将产品推向市场,一旦产品得到实地验证,那么(整合)就会到来。”

20190911-003.jpg
Josep montanyà,Nanusens首席执行官(图自:Nanusens)

尽管Nanusens打算最终将其技术延伸至更低的工艺节点,但这项技术并不会像数字电路那样明显地带来尺寸缩小。在较低的节点上建立一个所需大小的质量块比较困难,但却很有意思,例如将铜线切换至0.13微米节点。铜的密度比铝高,而且它的导电性能也更好。

未来的产品还将包括温度、湿度和压力传感器,以及指南针和麦克风的设计。 Nanusens追求的另一条产品路线是天线调谐器的电容式射频(RF)开关。Montanyà表示:“我们预计(RF传感器)在长远看来会发挥更大作用,好消息是我们正朝着这个方向努力。在世界移动通信大会(MWC)期间,我们展示的一个产品,引起了大家的兴趣。”

成本问题

是否所有这些设计都要比传统的MEMS花费更高的成本?Montanyà将成本分为四部分:ASIC芯片、MEMS芯片、封装、测试和校准,其中Nanusens的方案在ASIC芯片、测试和校准成本与传统MEMS相同。取消独立的MEMS芯片能够节约成本,不过在ASIC芯片进行整合会增加15%的后端处理成本。 但因为不需要多管芯封装(multi-die packaging),所以总体上能够省钱。总的来说,Nanusens生产的MEMS传感器本来就更便宜,对于传感器组合来说,其成本优势变得更加明显。

“单个传感器的成本优势为30%。” Montanyà说。“如果我们整合传感器,可能会更多......在同一个芯片中添加另一个传感器可能会使CMOS面积增加10%至20%,可能需要一个新的模拟前端,但数字部分可以共享。与竞争对手添加新传感器时需要更多的管芯、更多的引线键合等相比,整合传感器的成本优势非常大。”

公司发展路径

通往目标的道路并不总是平坦的。Montanyà之前的公司,Baolab Microsystems,在2005年开始为CMOS工艺后端设计MEMS结构。2012年,该公司行将推出其首款CMOS MEMS传感器产品“指南针”之际,一位主要投资者坚持要求在Baolab进入市场之前将其以高价出售。据Montanyà称,这名投资者还拒绝了美国知名公司的投资要约。2014年,由于找不到买家,Baolab最终关门大吉。同年晚些时候,Montanyà成立了Nanusens,并在2016年获得了种子基金。

“Nanusens的三位创始人均来自Baolab Microsystems,”Montanyà表示,但该公司“花了两年时间开展新设计,因为2012年的设计在2016年没有意义......性能要求发生了变化。”2018年,该公司准备发布惯性传感器之时,又由于其代工厂GlobalFoundries停产,再次遭遇挫折。GlobalFoundries最终出售了MEMS晶圆厂,并完全放弃了MEMS业务。

但Nanusens并没有退缩,而是重新设计了自己的器件。由于采用了超低漏电(ULL)工艺,ASIC和MEMS设计都需要调整——这种0.18微米的CMOS工艺已经不能与行业兼容。最新的设计与标准CMOS工艺兼容,生产则已转移到中芯国际,而台积电作为第二选择。
20190911-004.jpg
内置在0.18微米CMOS中的2D运动传感器(图自:Nanusens)

这些主流晶圆代工厂可以提供批量生产能力,满足快速增长的无线耳机市场。相比之下,传统MEMS器件供应链需要专业的代工厂,因而无法快速扩张并满足当前智能手机的市场需求。

鉴于Montanyà的经验,他选择限制个别风险投资公司的投资,以防止任何外部方持有公司大量股份,就不足为奇了。众筹提供了一种便捷筹资方式,即从大量的小规模投资者(上一轮超过750个)那里筹集到实现批量生产所需的资金。该公司迄今已通过这种方式筹集了约200万欧元,去年甚至将总部迁至伦敦,以鼓励英国企业投资计划(EIS)进行投资。据报道,上一轮融资筹集的资金超过目标金额的三倍。

随着令人沮丧的商业问题最终得到解决,Nanusens可以继续推进已经开发了14年的颠覆性创新技术。Nanusens用于耳机运动检测的加速度计芯片样品将在今年第四季度提供。

本文同步刊登于电子工程专辑杂志2019年9月刊

责编:Yvonne Geng

EETC https://www.eet-china.com
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Sally Ward-Foxton
Sally Ward-Foxton是EE Times特派记者,她专注于EE Times美国版的AI技术和相关话题,以及EE Times欧洲版杂志中的欧洲企业报道。 Sally base在英国伦敦,她报道电子行业已有15年,曾为Electronic Design、ECN、Electronic Specifie撰写设计、电子元件类文章。 她拥有剑桥大学的电气和电子工程硕士学位。
  • 3nm & Beyond: 台积电、三星和英特尔各有什么规划线路 在半导体制造中,3nm工艺是继5nm MOSFET技术之后的下一个工艺节点。全球晶圆制造三巨头(英特尔、三星和台积电)都于2019年宣布了3 nm研发和量产计划。三星的3nm工艺率先采用GAAFET(栅极全绕型场效应晶体管)技术,他们自称为MBCFET(多桥沟道场效应晶体管);而台积电的3nm工艺仍继续使用增强的FinFET(鳍式场效应晶体管)技术,2nm工艺将转向GAAFET结构;英特尔有望于2023年发布基于GAA结构的5nm工艺(性能相当于前两家的3nm工艺)。此外,IBM最近发布的2nm工艺芯片一直就采用跟其7nm和5nm芯片一样的纳米片(nanosheet)结构,也就是业界通称的GAA技术。
  • 台湾疫情突然升温!芯片原厂及晶圆代工厂纷纷升级防疫措 台湾地区近日疫情突然升温,连续几天确诊人数过百。5月17日,据台湾地区流行疫情指挥中心公布,仅5月16日采检日确诊的病例就达到333例,加上2例境外输入,单日确诊人数达到335人。此举引起韩国媒体关注报导,担心疫情可能使半导体产业面临的供给问题愈发严重;而路透社等媒体则相对乐观,认为目前防疫升级地区未包括半导体重镇新竹……
  • 刘鹤主持科技体制改革会议,讨论后摩尔时代的 “潜在颠 5月14日,国家科技体制改革和创新体系建设领导小组第十八次会议在北京召开。中共中央政治局委员、国务院副总理、国家科技体制改革和创新体系建设领导小组组长刘鹤主持会议并讲话,会议讨论了面向后摩尔时代的集成电路潜在颠覆性技术。
  • 芯片制程大PK:Intel 10nm,三星3nm,IBM 2nm,台积电1nm 目前全球的IT产业一年的规模超过10万亿美元,在全球半导体芯片缺货涨价的趋势下,各大芯片公司开启了硬核竞争模式:三星首发3nm,IBM推出2nm,台积电突破1nm,而英特尔这边,还在10nm边缘徘徊。
  • 华为、OPPO手机充电器被检出严重不合格后,反转了…… 近日,泉州市市场监督管理局发布了一份“2020年第四季度泉州市流通领域手机电源适配器抽检结果”,其中有不少国内大牌出现了抽检不合格的情况,包括华为和OPPO。事后华为出面澄清,市场监督管理局也将不合格产品定义为山寨产品……
  • 台湾大停电,岛内存储与晶圆代工厂回应未受影响 位于中国台湾高雄的兴达电厂于13日下午2时37分发生故障,影响范围遍及全台。不过我们的读者还是最担心当地晶圆厂的运作状况…
  • Intel 11代酷睿1处理器正式发布:10 今晚,Intel发布的11带酷睿处理器采用10nm制程,面向高性能移动桌面版。同时发布的还有同样架构的至强W-11000系列,面向高性能移动工作站。
  • AMD RX 6600系列或配备8GB显存 MD的RX 6600系列可能配备的不是之前传闻的6或12GB显存,二是8GB。可能包含64MB的内置Infinity Cache。
  • 平头哥发布玄铁907处理器,已向多家 平头哥发布旗下玄铁系列新款处理器—玄铁907,该处理器对开源RISC-V架构进行优化设计,兼顾高性能及低功耗特点,可应用于MPU(微处理器)、智能语音、导航定位、存储控制等领域,据透露,该处理器已向多家企业授权。

  • 动力总成系统集成化推动电动汽车进 在德州仪器 (TI) 努力改进电动汽车动力总成架构后,我们的客户可以将系统设计成本削减一半,同时有效提高功率密度、效率和可靠性,并让更多人都能买得起电动汽车。 
  • 大学生入职中芯国际年薪多少?官方回应 做为国内最大最先进的半导体制造公司,中芯国际是明星企业,也是唯一量产14nm的国内公司,近年来也在不断扩充力量,吸引人才加盟。大学毕业生去中芯国际工作,那收入水平如何?对于这个问题,有投资者在互动平台
  • 华为中国生态大会,徐直军如是说 5月17日,“华为中国生态大会2021”在深圳会展中心开幕,华为轮值董事长徐直军发布主题演讲,谈及华为HarmonyOS(鸿蒙系统)。他预计到今年年底将有至少3亿台设备搭载鸿蒙系统,其中2亿台为华为自
  • 一文读懂全系列树莓派! 关注、星标公众号,直达精彩内容中途入坑的小伙伴们对树莓派4B系列肯定不陌生,但可能对之前系列的树莓派也了解不多。今天的这篇文章,我们来更系统地看看这台非常酷的小电脑是什么,也给小伙伴们简单介绍一下你可
  • 必看!100个示波器基础知识问答 1. 对一个已设计完成的产品,如何用示波器经行检测分析其可靠性?答:示波器早已成为检测电子线路最有效的工具之一,通过观察线路关键节点的电压电流波形可以直观地检查线路工作是否正常,验证设计是否恰当。这对
  • DS18B20和51单片机AT89C2051的接口电路图 DS18B20和单片机AT89C2051的接口电路如下图所示用单片机AT89C2051的P1.7口线经上拉后接至DS18820的引脚2数据端,引脚1接电源地端,引脚3接+5V电源端。为了方便大家更好的
  • 5.9~5.15电子行业新闻周报 文章转载自“TechGuide科技向导” 5.9~5.15|电子行业新闻周报一周电子行业热点1终端手机声称华为P50系列的真实渲染图再见安卓!鸿蒙版京东App上架华为商城:正式版最快6月见公
  • 水分对锂电池性能影响及抑制途径 点击上面↑“电动知家”可以订阅哦!近日精彩阅读:重大信号!中国新能源产业将迎新一轮爆发!刚刚!南北大众停产!中国燃油车全面禁售时间表发布!特斯拉太牛了.....和解了!又一新势力入局!或收购北汽工厂!
  • 如何开发自己的第1个C++项目? 开公众号以来,我发现C++er提到最多的一个困扰,居然是——这也间接证明了,C++开发的确是一门学无止境的编程技术。有种说法是,“职业生涯中会有无数次精通C++的时刻,但永远不要怀疑,还会有下一次。”
  • 特斯拉又出大事故!撞倒2交警,1人殉职! 点击上面↑“电动知家”可以订阅哦!特斯拉车又出大事了!电动知家消息,5月17日下午,浙江台州高架桥上一特斯拉轿车碰撞两名正在处理事故的交警,5月17日台州市公安局交通警察局发布通报称,目前,两名伤员正
  • 台湾疫情大暴发!台积电市值蒸发3890亿新台币 单日新增333例台湾新冠疫情正在迅速发酵,5月15日新增180例、16日新增206例,17日新增333例,本土病例屡创单日最高纪录,是防疫一年多来最严重情况。继大立光证实员工确诊之后,5月17日,iP
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了