广告

传华为自研PA将量产,摆脱美国依赖指日可待?

时间:2019-10-28 作者:网络整理 阅读:
传华为自研PA将量产,摆脱美国依赖指日可待?
据供应链最新消息表示,华为已经研发PA芯片,将交给国内公司代工,明年Q1季度小幅量产。PA芯片指的是功率放大器(Power Amplifier),射频前端发射通路的主要器件,手机里面 PA 的数量随着 2G、3G、4G、5G 逐渐增加,基站方面也是一样……
ASPENCORE

华为今年5月份被美国列入实体清单,被禁止采购美国公司的芯片及软件,随后华为表示启用备胎计划,意味着更多芯片将自行研发。7l5EETC-电子工程专辑

而据供应链最新消息表示,华为已经研发PA芯片,将交给国内公司代工,明年Q1季度小幅量产。7l5EETC-电子工程专辑

微博用户@手机晶片达人 爆料称,华为自研的PA,开始释单给国内的三安集成。明年第一季小量产出,第二季开始大量。以分散目前集中在台湾的穩懋PA代工的风险,也算是中国半导体国产化的一环。7l5EETC-电子工程专辑

20191028-huawei-PA.jpg7l5EETC-电子工程专辑

 7l5EETC-电子工程专辑

PA为什么重要?

PA芯片指的是功率放大器(Power Amplifier),射频前端发射通路的主要器件,主要是为了将调制振荡电路所产生的小功率的射频信号放大,获得足够大的射频输出功率,才能馈送到天线上辐射出去,通常用于实现发射通道的射频信号放大。7l5EETC-电子工程专辑

20191028-huawei-PA-1.jpg7l5EETC-电子工程专辑

射频前端芯片包括功率放大器(PA),天线开关(Switch)、滤波器(Filter)、双工器(Duplexer 和 Diplexer)和低噪声放大器(LNA)等,在多模/多频终端中发挥着核心作用。7l5EETC-电子工程专辑

4G 时代,智能手机一般采取 1 发射 2 接收架构,预测 5G 时代,智能手机将采用 2 发射 4 接收方案,未来有望演进为8 接收方案。PA是一部手机最关键的器件之一,它直接决定了手机无线通信的距离、信号质量,甚至待机时间,是整个射频系统中除基带外最重要的部分。7l5EETC-电子工程专辑

20191028-huawei-PA-2.jpg7l5EETC-电子工程专辑

手机里面 PA 的数量随着 2G、3G、4G、5G 逐渐增加,4G 多模多频手机所需的 PA 芯片为5-7 颗,预测 5G 手机内的 PA 芯片将达到 16 颗之多。7l5EETC-电子工程专辑

20191028-huawei-PA-5.jpg7l5EETC-电子工程专辑

5G 手机功率放大器(PA)单机价值量有望达到 7.5 美元: 同时,PA 的单价也有显著提高,2G 手机用 PA 平均单价为 0.3 美金,3G 手机用 PA 上升到 1.25 美金,而全模 4G 手机 PA 的消耗则高达 3.25 美金,预计 5G 手机PA 价值量达到 7.5 美元以上。7l5EETC-电子工程专辑

20191028-huawei-PA-3.jpg7l5EETC-电子工程专辑

基站方面也是一样。4G 基站采用 4T4R 方案,按照三个扇区,对应的射频 PA需求量为 12 个。5G 基站预计 64T64R 将成为主流方案,对应的 PA需求量高达 192 个,PA数量将大幅增长。7l5EETC-电子工程专辑

目前基站用功率放大器主要为基于硅的横向扩散金属氧化物半导体(LDMOS) 技术,不过 LDMOS 技术仅适用于低频段,在高频应用领域存在局限性。对于 5G 基站 PA 的一些要求可能包括3~6GHz 和 24GHz~40GHz 的运行频率,RF 功率在 0.2W~30W 之间,5G 基站 GaN 射频 PA 将逐渐成为主导技术,而 GaN 价格高于LDMOS 和 GaAs。7l5EETC-电子工程专辑

5G 基站 GaN 射频 PA 将成为主流技术,逐渐侵占LDMOS 的市场,GaAs 器件份额变化不大。GaN 能较好的适用于大规模MIMO,预计 2022 年,4G/ 5G 基础设施用 RF 半导体的市场规模将达到 16亿美元,其中,MIMO PA年复合增长率将达到 135%,射频前端模块的年复合增长率将达到 119%。7l5EETC-电子工程专辑

目前PA芯片主要掌握在美国Skyworks、Qorvo等公司中,代工厂商主要也是中国台湾公司,但大陆公司近年来已经加大自主研发及生产力度,华为对PA芯片的研发不必说,三安光电很早就布局了砷化镓材料,是射频元件的重要元件之一,未来有望成为中国大陆最主要的PA代工厂之一。7l5EETC-电子工程专辑

也有网友称,华为从P30就开始部分试用自研PA了,但从目前发布的拆解报告来看,还都是采用Skyworks的器件。7l5EETC-电子工程专辑

责编:Luffy Liu7l5EETC-电子工程专辑

本文综合自新浪微博、国金证券研究所、创璟资本、快科技报道7l5EETC-电子工程专辑

ASPENCORE
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
  • 纳芯微推出基于电容隔离技术的隔离误差放大器NSi3190 高可靠、高性能、低成本,打破模拟电源小型化瓶颈。
  • GaN IC:推动分立式晶体管走向尽头 采用分立式氮化镓器件或分立式MOSFET器件的设计工程师,现在可以改用GaN集成电路以节省时间、占板面积及提升他们的系统性能,从而实现具备更高的功率密度、更高的效率及更具成本效益的先进设计。当氮化镓集成电路开始集成多个驱动器、保护电路、控制电路及功率晶体管于单个芯片上时,设计师会逐渐减少分立式晶体管的使用。这是分立式晶体管走向尽头的开始。
  • 没有电容计,如何测量未知电容? 本文介绍的测量方法与各种SPICE模型的仿真相关。建议在实际电路中采集数据。用户可以根据所需的电容值,自由地创建数学模型;当然还要考虑瞬态等待时间和RC时间常数,因为这些因素可能导致长时间的等待。建议尝试根据需要更改电子元件的值。
  • 手把手教你构建可调线性AC-DC电源 双输出低噪声电源对于电子发烧友来说是一个必不可少的工具。在许多情况下都需要双输出电源,例如设计前置放大器和为功率运算放大器(OPAMP)供电等。在本文中,我们将构建一个可供用户独立调节正负轨的线性电源,在其输入端采用普通的单输出交流变压器即可。
  • 如何轻松稳定带感性开环输出阻抗的运算放大器? 一些运算放大器(运放)具有感性开环输出阻抗,稳定这一类运放可能比阻性输出阻抗的运算放大器更为复杂。最常用的技术之一是使用“断开环路”方法,这涉及到断开闭环电路的反馈环路和查看环路增益以确定相位裕度。一种鲜为人知的方法是使用不需要断开环路的闭环输出阻抗。在本文中,我将讨论如何使用闭环输出阻抗来稳定带阻性或感性开环输出阻抗的运算放大器。
  • 【资料汇总】全方位学习ADC/DAC 许多初步了解模数转换器(ADC)的人想知道如何将ADC代码转换为电压。或者,他们的问题是针对特定应用,例如:如何将ADC代码转换回物理量,如电流、温度、重量或压力……
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了